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1 Probability

1.1 Basics

Def. 1.1: Sample Space

The sample space, denoted by Q # 0, is the
set of all possible outcomes of an experiment,
it can be finite or infinite.

Def. 1.2: Event

An event A is a subset of the sample space
A C Q, or an element of the powerset of the
sample space A € 29.

Def. 1.3: Observable Event Set

The set of all observable events is denoted by
F, where F C 29,

Note

- Usually if Q is countable F = 22, however some-
times many events are excluded from F since it’s
not possible for them to happen.

Def. 1.4: 0—Algebra
The set F is called a o—Algebra if:
i) QeF
(i) VACQ:Ac F= A c F
(iii) V(An)nen: An € F=>Us2 1 An €F

Def. 1.5: Probability Function

P : F — [0,1] is a probability function if it
satisfies the following 3 axioms:
(i) VA€ F: P[A] >0
(i) P[Q] =1
(iif) PUZZ, An] =

where A,, are disjunct.

ne1 P[An]

Properties (derived from the 3 axioms):
- P[A®] =1-P[4]

- P0]=0

- AC B = P[A] < P[B]

. P[AU B] = P[A] + P[B] — P[AN B]
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Theorem 1: Inclusion-Exclusion

Let Aq,..

P {O Ai:| = zn:(*l)k_lsk
=1 k=1

., Ay be a set of events, then:

where

Pl A

IC{1,...,n} iel

1.2 Discrete Probability

We talk about discrete probability if 2 is countable
(finite or infinite).

Def. 1.6: Laplace Space

IfQ = {wi,...,wn} with || = N where all w;
have the same probability p; = %, Q is called
Laplace Space and P has a discrete unifrom
distribution. For some event A we have:

|A]

PlAI = o1

Note

- The discrete uniform distribution exists only if 2

is finite.

.3 Conditional Probability

Def. 1.7: Conditional Probability

Given two events A and B with P[A] > 0, the
probability of B given A is defined as:

P[BNA4]

PBIAl = —pn

Theorem 2: Total Probability

Let Aj,..., A, be a set of disjunct events
Vi#j: AiNA; =0 where U A; = Q,
then for any event B C Q:

P[B] =) P[B|A]P[A]

i=1

Theorem 3: Bayes’ Rule

Let Ai,...,A, be a set of disjunct events
Vi # 5 @ A; ﬂAj = () where U?:lAi = @O
with P[A;] > 0 for alli=1,...,n, then for an
event B C Q with P[B] > 0 we have:

P[B|Ag]|P[Ay]
>ie1 P[BlAi] P[A;]

P[Ag|B] =

Note
- If we have only two events A and B it simplifies

to: P[A|B] = ZIBIAILIA] [B}L‘?g}’ (4]

1.4 Independence

Def. 1.8: Independence

., Ay are independent if
e km}Cl,...,n we

A set of events Aq, ..
for all m € N with {k1,.

have:
m
= H P[Aki]
i=1

m

ﬂ Ar;

i=1

P

Properties

With only two events:
- A and B are independent iff P[ANB] = P[A]P|[B]
- A and B are independent iff P[B|A] = P[B]
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2 Combinatorics

Let n be the number of total objects and k be the
number of object that we want to select (k = n if
we consider all objects), then:

Def. 2.1: Permutation

A permutation Py (k) is an arrangement of el-
ements where we care about ordering.

(i) Repetition not allowed:

n!
P (k) =
(k) (n —k)!
(ii) Repetition allowed:
Py (k) =nkF

Def. 2.2: Combination

A combination Cy (k) is an arrangement of el-
ements where we do not care about ordering.

(i) Repetition not allowed:

n Py (k) n!
C,, (k) = = =~
w0 = () =5 Kl — k)l
(ii) Repetition allowed:
n+k—1
ol = ( k )

Note

- Repetition is the same as replacement, since by
replacing an object in the set we’ll be able to use
it again.

Properties
- 0l=1
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3 Random Variables 3.2 Expected Value 3.3 Variance 3.4 Other Functions

Def. 3.6: Variance Def. 3.8: Covariance

3.1 Basics Def. 3.4: Expected Value

Def. 3.1: Random Variable

Let (2, F,P) be a probability space, then a
random variable (RV) on Q is a function:

X:Q->WX)CR
if the image W(X) is countable X is called a
discrete random variable, otherwise it’s called
a continuous random variable.

Def. 3.2: Probability Density

The probability density function (PDF) fx :
R — R of a RV X, is function defined as:

fx(@) = P[X =] = P[{w]| X(v) = z}]
with X discrete we use px (t) instead of fx ().
Properties

- fx =0 and fx > 0 outside of W(X).
[ fx()dt =1

Def. 3.3: Cumulative Distribution

The cumulative distribution function (CDF)
Fx : R — [0,1] of a RV X, is a function de-
fined as:

Fx(x) = PIX <a] = P[{w | X(w) < 2]

if the PDF is given it can be expressed with:

Z px(z;) X discr.
ang Lav
Fx(@)=y _
/ fx@®)dt X cont.
— o0
Properties

- Monotone: If t < s then Fx(t) < Fx(s).
- R-continuous: If t > s then gim Fx(t) = Fx(s).
—s

- Limits: tin}l Fx(¢) :OAtLi)n;o Fx(t) =1.
- Pla< X <b]=Fx(b) - Fx(a) = [° fx(t)dt
CPX>t]=1-P[X <t]=1-Fx(t)

- APy (2) = fx(a)
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Let X be a RV, then the ezpected value is de-
fined as:

Z zk - px (zg) X discr.
TR EW(X)
oo
/ z - fx(x)dz X cont.
— o0
Properties

CEX]<E[Y]if Vw: X(w) <Y (w)

CE X aiXi] = 3o aiE [Xi]

- E[X]=3272, PIX 2 4], if W(X) € No.
CE [0 X] # X E[X]

-E[EX]) =E[X]

-E[XY]? <E[X?]E[Y?]

n n
- E [Hx} = Hu«:[xi] for indep. X1, ..., Xn.
1=0

=0

Theorem 4: E of Functions

Let X beaRV and Y = g(X), withg : R — R,
then:

Z 9(zk) -px(xy) X discr.

xR EW(X)
E[Y] =

/°° g9(x) - fx(x)dx X cont.

— 00

Def. 3.5: Moment-Generating Function

Let X be a RV, then the moment-generating
function of X is defined as:

Mx(t) =E [etX ]

Let X be a RV with E[X?] < oo, then the
variance of X is defined as:

Var [X] = E [(X — E[X])?]
with the extended form:
(Z px (k) - Ii) —u? X discr.
Var [X] = .

(oo}
/ 22 fx(xz)de —p® X cont.
—o0

Properties

- 0< Var [X] <E[X?]

- Var[X] =E [X?] —E[X]?
- Var[aX +b] = a®Var [X]

- Var [X] = Cov(X, X)

n
- Var [Z aiXi:| =
i=0

a;a;Cov(X;, X;)

i a?Var [X;] 4 2 Z
i=0

1<i<j<n

- Var [Zn: aiXi:| = i'\/&r [X5]
i= i=0

=0
if V(i # j) : Cov(X;, X;) =0.

Def. 3.7: Standard Deviation

Let X be a RV with E [Xz] < 00, then the
standard deviation of X is defined as:

o(X) = sd(X) := +/Var [X]

ETH Ziirich - D-INFK

Let X,Y be RVs with finite expected value,
then the covariance of X and Y is defined as:

Cov (X, Y) = E[(X ~ E[X])(Y —E[Y])]
=E[XY]-E[X]E[Y]

Note

- The covariance is a measure of correlation be-
tween two random variables, Cov (X,Y) > 0
if Y tends to increase as X increases and
Cov (X,Y) < 0 if Y tends to decrease as X in-
creases. If Cov(X,Y) = 0 then X and Y are
uncorrelated.

Properties
- Cov(aX,bY) = abCov(X,Y)
- Cov(X 4+ a,Y +b) = Cov(X,Y)

. Cov(a1X1 + a2 X2,b1Y1 + bQYQ) =
a1b1Cov(X1, Y1) + a1b2Cov(X1, Y2) +
a2b1Cov(X2,Y1) +a2bQCOV(X2,Y2)

Def. 3.9: Correlation

Let X,Y be RVs with finite expected value,
then the correlation of X and Y is defined as:

Cov (X,Y)

Corr(X,Y) = /Var[X] - Var[Y]

Note

- Correlation is the same as covariance but normal-
ized with values between —1 and 1.

- X,Y indep. = Corr(X,Y) = Cov(X,Y) = 0.
Def. 3.10: Indicator Function

The indicator function I for a set (event) A
is defined as:

1 weAd
Ta(w) = {0 w € A€
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3.5 Joint Probability

Def. 3.11: Joint PDF

The joint probability density function fx :
R™ — [0,1] with X = (X1,...,X») is a func-
tion defined as:

fx(x1,...,2n) = P[X1 =21,...,Xn = Tn]

with X discrete we use px(x) instead of

fx ().

Def. 3.12: Joint CDF

The joint cumulative distribution function

Fx : R* — [0,1] with X = (X1,...,X,) is
a function defined as:
Fx(z1,...,2n) = P[X1 <z1,...,Xn < an)

if the joint PDF is given it can be expressed

with:
Z Z px(t) discr.
t1<z1 tn<Tn
Fx(x) =
Tq @,
/ e / fx(t)dt cont.
—o0 —oo
where t = (t1,...,tn) and x = (21,...,Zn).
Properties
8an($17 - ,:L‘n)
= T1,...,T
8$17...,8In fX( 1 n)

Def. 3.13: Marginal PDF

The marginal probability density function
fx; : R = [0,1] of X; given a joint PDF

fx(z1,...,2n), is defined as:
YD DD IR TIPS
ti—1tit1
fx; () =

‘/_O:o /_0:0 fx (t)dt cont.

where t = (1, s tim1stit1,---
the discrete case t, € W(Xy).

,tn), and in

Note

- The idea of the marginal probability is to ignore
all other random variables and consider only the
one we're interested to.
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Def. 3.14: Marginal CDF

The marginal cumulative distribution function
Fx, : R = [0,1] of X; given a joint CDF

Fx(z1,...,2Zn), is defined as:
FXt(J?Z): lim Fx(l‘l,,xn)
T joq—rO0

Def. 3.15: Conditional Distribution

The conditional distribution fx|y : R — [0,1]
is defined as:

fX\Y(90|y) =P[X =z|Y =]

PX =z,Y =y
P[Y =]

_ Joint PDF

" Marginal PDF

with X and Y discrete we write px |y (z|y) in-
stead of fx |y (z|y).

.6 Independence

Def. 3.16: Independence

The RVs X,..., X, are independent if:

Fx, . ..x,(®1,...

vzn) = [ [ Fx, (@)
=l

similarly if their PDF is absolutely continuous
they are independent if:

n
Fxirnxn @, mn) = [ £x, (@0)
i=1
Theorem 5: Function Independence
If the RVs X1,..., X, are independent where

fi : R = R is a function with Y; = f;(X;)
then also Y7,...,Y, are independent.

Theorem 6

The RVs Xji,...,X, are independent iff
VB; C W(X;):
n
P[X1 € B1,...,Xn € Bo] = [[ P[X; € B
i=1
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3.7 Joint Functions
Def. 3.17: Joint Expected Value

The joint expected value of a RV Y =

9(X1,...,Xn) = g(X) is defined as:
Z Zg t)px (t discr.
E[Y] =
/ / g(t) fx(t)dt cont.
where t = (¢1,...,tn), and in the discrete case
tr € W(Xyg).

Def. 3.18: Conditional Expected Value

The conditional expected value of RVs X, Y is:

erpx|y(z|y) discr.

z€R
EX|Y](y) =
oo
z - fx|y(zly)dz cont.
Properties
- ER[X]Y]] =E[X]
- E[X|Y](y) =E[X] if X,Y indep.
Def. 3.19
Let Y = g(X1,...,Xn) = g(X), then:
PlY eC]= fx (t)dt
Ac
where A = {x = (21,...,2n) € R™ | g(x) € C}

and t = (t1,...,tn).

Theorem 7: Transformation

Let F' be continuous and a strictly increasing
CDF and let X ~ 1/(0,1), then:

Y=F'YX)=>Fy=F

D-INFK

3.8 Evaluation

Guide 3.1: Monte Carlo Integration

Let I = f; g(x)dx be the integral of a function
that is hard to evaluate, then:

b
I:/ g(z)dz
b
= (b—a)/ g(x)biadx
—t-0) [ s@

=(b—a)-Efgt))]

where U(a, b) is uniformely distributed. Then
by the LLN know that we can approximate
E[g(Ud)] by randomly sampling wui,us,...
from U(a,b).

P05 g(us) ——> (b— a) - E[g0)]
d=Il

n

Guide 3.2: Transformation

If we have a RV X with known CDF (strictly
increasing) with Y = g¢(X), to evaluate Fy
and fy we proceed as follows:

(i) Fy(t) = P[g(X) <t] = ng fx(s)ds
(i) fr (1) = 2
where Ay = {s € R| g(s) <t}

Guide 3.3: Sum Convolution

Let X1,...,X, be independent RVs then the
sum Z = X1+ -+ Xn, has a PDF fz(z) eval-
uated with a convolution between all PDF's:

fz(2) = (fx, (@1) * - % fx,, (20)) (2)

in the special case that Z = X +Y:

Z px (zk)py (2 — zg)  discr.

R EW(X)
fz(z)=9
fx (@) fy (z —t)dt cont.
Note

- Often is much easier to use properties of the RVs
to find the sum instead of evaluating the convo-
lution.
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Guide 3.4: Product

Let X, Y be independent RVs then to evaluate
the PDF and CDF of Z = XY we proceed as
follows:

Fz(z) = P[XY < z]
=P[X>£,Y<O0+P[X<£&,Y >0

-/ Ooo[ " e
+ /0 = [ l ;o fx(w)dx} fr (W)dy

where the PDF is:
o z 1

9= [~ i (2) av
—c0 Y ‘y

Guide 3.5: Quotient

Ty (y)dy

fz(2) = —

Let X, Y be independent RVS then to evaluate
the PDF and CDF of Z = 7 we proceed as
follows:

&@>1ﬂ5 }

Y <0+ P[X <2Y,Y > (]

_ / /y x(x)dz} e
+ [ [/_ Cix (x)dx} fr (w)dy

where the PDF is:

d
—F
dz 2(2)

f2(2) = = [ Wiy Wy
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3.9 Sum and Average

Let X1,...,X, be ii.d RVs with finite mean pu,
standard deviation o, and let Z,, be the standard-
ization of a RV Y defined as:

Sum Average

n
Y Sn:ZXi Y'rL:%X:)(i
i i=1

E[Y] np p
2
Var [Y] no? 7
n
o
a(Y) Vno 7
z Sn —np Y'n — M
" ov/n o/v/n

3.10 Convergence

Def. 3.20: Probability Convergence

Let X;,X2,... and Y be RV on the same
probability space, then:
(i) X1,X2,... converges to Y in prob. if:
Ve >0

lim P[|X —Y|>¢ =0
n—oo

(i1) X1,X2,...
if:

converges to Y in LP forp > 0

lim E[|X, - Y[’ =0
n—oo

(1ii) X1, Xo,...
surely if:

converges to Y, P-almost

P[lim Xn:Y]:

n—r 00

P [{w €N | nl;moo Xn(w) _ Y(w)}] -1

Def. 3.21: Distribution Convergence

Let X1,X2,... and Y be RV, with CDF
Fx,,Fx,,... and Fy then X, X5,... con-
verges to Y in distribution if:

Vz € R

Jim Fy, (z) = Fy (2)

3.11 Inequalities

Theorem 8: Markov-Inequality

Let X be a RV and g : W(X) — [0, 00) be an
increasing function, then for all ¢ with g(¢) > 0
we have:
Elg(X)]

9(c)

Note: for practical uses usually g(z) = =.

PIX>d<

Theorem 9: Chebyshev-Inequality

Let X a RV with Var [X] < oo then if b > 0:

P[X —E[X]| > b < Vaz[ ]
Theorem 10
Let X1,..., X, i.i.d. where Vt : Mx(t) < oo

then for any b € R:

P[S, > b] < exp (grelﬂg(nlog Mx (t) — tb))

Theorem 11: Chernoff-Inequality

Let X1,...,Xn, with X; i.4.d ~ Be(p;) and
Sp = >, where pun, = E[S,] = >0 p;
then if 6 > 0:

ed Hn
Pisn 2 (4 ) = (7557w

~O(e™")

ETH Ziirich - D-INFK

3.12 Limit Theorems

Theorem 12: Law of Large Numbers

Let X1, Xa,... be i.i.d RVs with finite mean
u. Let X, be the average of the first n vari-
ables, then the law of large numbers (LLN)
says that (different versions):

(i) Weak
Xn= Z s
(ii) Weak
VePHYn—M >e] mo
(iii) Weak

Ve P [|Xn — p| < €] ml
(iv) Strong

P[{w€Q|Xn

== ]

Note

- The law of large numbers says that if we aver-

age n ii.d. RV, then the more n increases the
more the average is probable to be close to the
expected value of the RVs: X,, = p.

Properties

lim =
n—o0

= (X)) = E[f(X)]

Theorem 13: Central Limit Theorem

Let Xq,...,Xy be ii.d RVs with finite mean
w and standard deviation o. Let Z, be a stan-
dardization, then for any z € R:

lim Fz, (z) = le P(Z, <z]=®(2)

n—r oo
Where a practical application is that for n big;:
(1) PlZn < 2] = ©(2)
(i) 2, % N(0.1)
(iii) S N (np,no?)
_ o2
(iv) Xn ~N(u, =)

Note

- The idea is that any (normalized) sum or average

of RVs approaches a (standard) normal distribu-
tion as n gets bigger.
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4 Estimators

4.1 Basics

Let Xip,...,X, iid. RVs, drawn accord-
ing to some distribution Py parametrized by
0 = (01,...,0m) € O where O is the set of all
possible parameters for the selected distribution.
Then the goal is to find the best estimator § € ©
such that 6 ~ 6 since the real 6 cannot be known
exactly from a finite sample.

Def. 4.1: Estimator

An estimator éj for a parameter 6; is a RV

0;(X1,...,Xn) that is symbolized as a func-
tion of the observed data.

Def. 4.2: Estimate

An estimate éj (z1,...,2zn) is a realization of
the estimator RV, it’s real value for the esti-
mated parater.

Def. 4.3: Bias

The bias of an estimator 8 is defined as:
Biasg[] := Eg[0] — 6 = Eg[0 — 6]
we say that an estimator is unbiased if:

Biasg[0] =0 or Eg[f] =6

Def. 4.4: Mean Squared Error

The mean squared error (MSE) of an estima-
tor 6 is defined as:

MSEy[0] = E[(9—0)?] = Var[8] + (Eo[9] )2

Def. 4.5: Consistent

A squence of estimators 6™ of the parameter
0 is called consistent if for any € > 0:

P16 — 9] > ¢ —— 0
n— oo

Note

- The idea is that an estimator is consistent only
if as the sample data increases the estimator ap-
proaches the real parameter.
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4.2 Maximum-Likelihood Method

Def. 4.6: Likelihood Function

The likelhood function L is defined as:

p(x1,...,Tn;0) discr.
f(x1,...,2n;0) cont.

L(acl,...,xn;e):{

Def. 4.7: MLE

The mazimum likelhood estimator O for 6 is
defined as:

6e {argmaxL(Xl,...,Xn;G)}
6o

Guide 4.1: Evaluation

Given a i.i.d. sample of data z1,...,x, and a
distribution Py:

(i) Identify the parameters 8 = (61,...,0m)
for the given distribution (e.g. if normal
0 = (61 = p, 02 = 02)).

(ii) Find the log likelihood, we use the log of
the likelhood since it’s much easier to dif-

ferentiate afterwards, and the maximum
of L is preserved (V6;):

9(0;) :=log L(x1,...,%n;0;)

=1og [ ] /(@:56;)
=il

the goal here is to split f into as many
sums as possible using log properties
(easier to differentiate).

(iii) Find the maximum of the log likelihood,
note that if the distribution is simple it
might be easier to use the normal like-
lihood function and manually find the
max, and if the distribution is hard we
might have to use iterative methods in-
stead of differentiation. Then for each
parameter 6;:

dg max
do,

0

Often we want to find inside the deriva-

tive set to 0 a sum or average (Sn, Xn).
(iv) State the final MLE, where each param-

eter estimator is the max found for 6;:

Orvre = (01,...,0m)
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4.3 Method of Moments

Def. 4.8: Theoretical Moments

Let X be a RV, then:

(i) The kt* moment of X is:
pr = my, = E[X*]
(ii) The k" central moment of X is:
py = my, = E[(X — u)"]
(iii) The k" absolut moment of X is:
My, -=E[|X|*]  (not used for MOM)

Def. 4.9: Sample Moments

Let X be a RV, then given a sample x1,...,Zn
using the Law of Large numbers:

(i) The k" moment is evaluated as:
. 1¢
Mk(mlv' 00 7xn) = ; fo
i=1

(i) The k'™ central moment is evaluated as:
n

. 1 .
fp(@e, e mn) = = (@ — )

i=1

Guide 4.2: Evaluation

Given a i.i.d. sample of data z1,...,x, and a
distribution Py:

(i) Identify the parameters 8 = (01, ...,0m)
for the given distribution.

(ii) Since the distribution is given the ex-
pected value Eg [X] = g1(61,...,60m) and
variance Varg [X] = g¢2(01,...,0n) are
known. The functions g; with 0 <7 <m
are parametrized by € and each of them
is equal to a thoretical moment.

(iii) Since we have also the sample data to
work with we can equate the theortical
moments to the moment estimators:

91(61,...,0m) = p1(x1,...,2n)

) =i
g2(01,...,0m) = f5(z1,...,2n)
gi(elv'-~79m) %/Aﬁ;(xl,...,in)

o (O1. .- 0m) = i (1. )

(iv) Now since there are m equations and m
unknown thetas we can solve for each 6
and set it as the estimator.

Orvom = (01, -.,0m)

- D-INFK

Note

- The first moment is the expected value, estimated

with: fi1(x1,...,2n) = Tn (average) and the sec-
ond central moment is the variance, estimated
with: g5 (z1,...,2n) = % S8 (z; —Tn)?. Note
that we always use the central moments for i > 1.

- If we are given only the PDF of a distribution

we can still evaluate the theoretical moments by
solving the expected value integral (or summation
if discrete).

. To check if 0; is unbiased we solve Eg[f;]

(parametrized by 6 is important) and check
whether it equals 6.

Properties
Useful to simplify MLM:

Ilizia -z =a [} 2
< log ([Tizy @) = 2274 log(x)
~log (7 e®) = a YTy @i
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5 Hypothesis Testing

Let Xi,...,X, iid. RVs, is distributed accord-
ing to some distribution Py parametrized by 6 =
(01,...,0m) € © where © = ©g U ©4 is the set
of all possible parameters for the selected distribu-
tion divided in two distinct subsets ©g N O 4 = 0.
Then the goal is to test wheter the unknown 8 lies
inside ©¢ or © 4, this decision system is written as
Hy : 6 € O (null hypothesis) and Hy : 0 € O 4
(alternative hypothesis).

Def. 5.1: Test

Concretely a test is composed of a function of
the sample t(z1,...,2n) = ¢ and a rejection
region K C R. The decision of the test is then
written as RV:

17

Def. 5.2: Test Statistic

t € K : reject Hy
t ¢ K : do not reject Ho

The test statistic T(X1,...,Xn) is a RV, it is
distributed according to some standard statis-
tic (z, t, x2).

5.1 Steps

(i) Model: identify the model Py, or which dis-
tribution does X; i.i.d. ~ Py follow and what
are the known and unknown parameters of 6.
(ii) Hypothesis: identify the null and alternative
hypothesis, in the null hypothesis we should

explicitely state the parameters value given.
Statistic: identify the test statistic 7' of Ho
and H, based on the sample size n and the
amount of known parameteres of Py.

Hy Statistic: state the distribution of the test
statistic under Hy.

(iii)

(iv)
(v) Rejection Region: based on the test statistic
and the significance level « evaluate the rejec-
tion region K.

Result: based on the observed data and the
rejection region reject Hy or don’t reject Hy.

(vi)
(vii)

Errors (optional): compute the probability
of error, significance and power to decide how

reliable is the test result.

Flavio Schneider

5.2 Hypotheses

To test an hypothesis we must establish the null Hy
and alternative H 4 hypotheses. The null hypoth-
esis is the default set of parameters 6, or what we
expect to happen if our experiment fails and the
alternative hypothesis is rejected.

Right-Tailed (RT)

Hp:0=00, Ha=0>0

+— Accept H : Reject Hy —

Hg : H»
1-a 1-8
B «
Left-Tailed (LT)
Hop:0=00, Ha=0<0p

+— Reject Hg : Accept Hg ——

|
Hy !
|

Ho
1-8 11—«
o B
c
Two-Tailed (TT)
Ho:0=00, Hsa=6#60
+— Reject Hg : Accept Hg : Reject Hy ——
| |
Hpy Ho 1 Hy
| |
| |
1-—8 1-8

ETH Ziirich

5.3 Statistic

X; n o2 Statistic
N (i, 02) any known z-Test
N(p,02) | small | unknown t-Test
any any any LR-Test
LR-Test

Def. 5.3: Likelihood-Ratio

Let L(z1,...,Zn;0) be the likelhood function
where g € ©p and 04 € ©4, then the
Likelihood- Ratio is defined as:

- L(z1,..
o L(zq,..

., Zn;00)

R(x1, .. o 00)

- Zn;00,04)

Note

- The intuition is that the likelihood function will
tend to be the highest near the true value of 6,
thus by evaluating the Likelihood-Ratio R be-
tween 6g and 64 we can conclude that if R < 1
the probability of getting the observed data is
higher under H 4 where if R > 1 the probability
of getting the obeserved data is higher under Hy.

Theorem 14: Neyman-Pearson

Let T = R(z1,...,Zn;00,04) be the test
statistic, K := [0,c¢) be the rejection region
and o* = Py, [T € K] = Py, [T < c]. Then
for any other test (T”,K’) with Py, [T €
K'] < a* we have:

Py, [T' € K'| < Py, [T € K]

Note

- The idea of the lemma is that making a decision
based on the Likelihood-Ratio Test with T' and
K will maximise the power of the test, any other
test will have a smaller power. Thus given a fixed
o™, this is the best way to do hypothesis testing.

- D-INFK

z-Test
Def. 5.4: z-Test

The z-test is used when the data follows a nor-
mal distribution and &2 is known.

(i) Statistic Under Ho:

Xn — po

= e

~ N(0,1)

(ii) Rejection Region:

K E [21—a,0)
K ZE (=00, za]

TT
- K = (_0072%]U[21—%700)

Properties
c® Na)=z24 = —21-0

- 20.95 = 1.645, 20.975 = 1.960

t-Test
Def. 5.5: t-Test

The t-test is used when the data follows a nor-
mal distribution, n is small (usually n < 30)
and o2 is unknown.

(1) Statistic Under Ho:

Xn — MO
S/\/n
where S2 = ﬁ S (X — Xn)?
(ii) Rejection Region:

T = ~t(n—1)

- K S [tn—l,l—ouoo)
- K Iér (_Oo>tn71,oc]

TT
- K = (—OO,tn,17%}U[tn,171,%,OO)

Properties

. tm,a = _tm,lfa
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Two-Sample Tests
Def. 5.6: Paried Two-Sample Test

The paried two-sample test is used when
we have Y1,...,Y, iid. ~ N(uy,02) and
Z1,...,Zn iid. ~ N(pz,0%) and X; = Y; —
Z;, then X1, ..., Xy id.d. ~ N(uy —pz,0 =
a'%, — 0‘%), thus if o is known we proceed with

a z-test on X otherwise with a t-test on X.

Def. 5.7: Unpaired Two-Sample Test

The unparied two-sample test is used when
we have X1,..., Xy i4.d. ~ N(ux,0%) and
Yi,..., Y idd. ~ N(py,02) for X;,Y; inde-
pendent.

For known ox, oy:

(i) Hypothesis: Ho : px — py = po
(ii) Statistic Under Hop:

Xn—=Yn—po
T= —— ~N(0,1)
-t

(iii) Rejection Region:

K E [21—a,00)
- K £ (—00,2a]
- K = (_007'2%} U [Zl—%voo)
For unknown ox = oy > 0:
(i) Hypothesis: Ho : px — py = po
(ii) Statistic Under Ho:

T=——F——— ~lptm—2

(iii) Rejection Region (d :=mn + m — 2):

- K = [td,lfouoo)
- K = (—Oo,td7a]
- K = (—00,tq,g]U[ta,1—g,00)

Flavio Schneider

5.4 Errors, Significance, Power

We use the test statistic T distributed according to
Py to evaluate the probability of errors:

Hy Don’t Reject (T ¢ K) Reject (T € K)
Type 1 Error (o)

true Correct Decision False Alarm
False Positive

Type 2 Error (3)
false Missed Alarm Correct Decision

False Negative

Probabilities:
- O Type 1 Error
P[T' € K| Hg true] = Py, [T € K] =«
- O Type 2 Error
P[T ¢ K| Ho false] = Pp, [T ¢ K] =8
- O Significance Level
P[T'¢ K| Ho truel =Py, [T¢ K]=1—-«
- O Power
P[T € K| Ho false) =Py, [T € K]=1-0
Note:

- The significance level should be small (near 0)
and the power large (near 1).

- Smaller & = Smaller power.

5.5 P-Value
Def. 5.8: P-Value

The p-value is the probability of getting the
observed value of the test statistic T(w) =
t(x1,...,xn), or a value with even greater ev-
idence against Hyp, if the null hypothesis is ac-
tually true.

- p-value = Py, [T > T'(w)]
- pvalue = Py, [T < T(w)]
- p-value = Py, [IT] > T(w)]

Note

- We can then still decide the test and reject Hop
if p-value < a (o = 0.01 very strong evidence,
a = 0.05 strong evidence, a > 0.1 weak evi-
dence).

- The p-value can also be viewed as the smallest o*
such that Hy is rejected given the observed value
of the test statistic t(z1,...,2Zn).

5.6 Confidence Interval
Def. 5.9: Confidence Interval

Given o (type-1 error) and an unknown
parameter 6 the confidence interval
C(X1,...,Xn) = [a,b] tells us that with
probability at least 1 — o the real parameter
0 is contained in C' (0 € C). Evaluated as:

1—a< P@[e S C(X1,...,Xn)}
=Pla< <]
Where a and b are:

(i) For 0 := p and known o:

a::Xn—z% g

vn
b:=Xp, + zg ﬁ
(ii) For 0 := p and unknown o:
S

a = Y'n — tn—l,l—% %
bi=Xn+t, 11-g %

n

(iii) For 6 = o2 and unknown p,o:

_ (n—1)S?
= X2 a
n—l,lff
_ (n—1)8?
b= {522
Xn-1,%

ETH Ziirich - D-INFK
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6 Discrete Distributions

6.3 Binomial Distribution

6.5 Negative Binomial Distribution

6.7 Poisson Distribution

6.1 Discrete Uniform Distribution Notation X ~ Bin(n, p) Notation X ~ NB(r, p) Notation X ~ Poi(\)
Notation X ~U(a,b) Experi . - ) ) . . . -
periment | What is the probability of  suc- Experiment | What is the probability of r suc- Experiment | What is the probability that z
Experiment | What is the probability that we cesses in n trials if one success has cesses in z trials if one success has events happen in one unit of time
pick the value z knowing that all probability p? probability p? knowing that on average A events
n = b—a+1 values between a and happen on one unit of time?
b are equally likely to be picked? Support z€{0,1,...,n} Support ze{r,r+1,r+2,...}
S " 1 b—1b n 1 Support z € {0,1,...} =Ny
uppor z€{aatl . b-1b} px (@) (") v -=pe px () C)a-prr A
z r—1 Al
px@ | px@ | e
n T = T
z—a+1 Fx(z) > px (i) Fx(z) S px (i) vy
Fx(z) - i=1 i=1 Fx () - G
E[X] aTer E[X] np E[X] T i=0
—a+1)%— E[X] A
Var [X (b—a+1)“—1 p
ar [X] 12 Var [X] np(1 — p) Var [X] r(1—p)
p? Var [X] A
Properties
6.2 Bernulli Distribution - Poisson Approzimation: If X ~ Bin(n,p) and Properties

n > 0, np < 5, then X ~ Poi(np). 6.6 Hypergeometric Distribution - Let X = 3" | X; ~ Poi()\;) where X; are inde-
Notation X ~ Be(p) - Normal Approzimation: If X ~ Bin(n,p) and pendend, then X ~ Poi (3071 Ai)
n > 0 np > 5 n(l —p) > 5 with p = Notation X ~ HGeom(n,m,r . = ~ Poi ~ Poi()\).
Experiment | What is the probability of success Pla < X < b], then: ( ) ( ) IfX =c+Y and ¥ ~ Poi(}) then X ~ Poi(3)
or fa{i)lure is success has probabil- ~® b+i-—np | > at+i-—np Experiment | What is the probability of picking
ity p? p= v/np(1—p) Vnp(1-p) )’ z elements of type 1 out of m, if
S . o1 there are r elements of type 1 and
Hppor z €{0,1} 6.4 Geometric Distribution n — 1 elements of type type 27
(@) 1—-p =0
- .
px » =1 Notation X ~ Geo(p) Support xz €{1,2,...,min(m,r)}
™N/n—r n
0 z<0 Experiment | What is the probability of one px (2) <x> (m _ x)/(m)
Fx(x) 1-p 0<z<1 success in z trials if one success
1 z>1 has probability p? L .
Fx(z) > px (i)
E[X] p Support ze{l1,2,...} ZT:WIL
E[X] —
Var [X] p(1-p) px(2) (1-p)*'-p n
Var [X] (n —r)nm(n —m)
Fx () 1-(1-p)® (2n —r)2(n - 1)
1
E[X] 5 Note
Var [X] 1—p - The items are picked without replacement.
P2
Properties
- Memoryless:

Flavio Schneider

PIX>m+n|X>m]=P[X >n]
- Sum: (30 X; ~ Geo(p)) ~ NB(n,p)

ETH Ziirich - D-INFK
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7 Continuous Distributions

Y ~ N(uy,02) and Z ~ N(uz,0%) then

X+Y ~N(uy +pz, 0% +0%)

- The gamma function I'(z) is the continuous anal-
ogous of the factorial: I'(n) = (n — 1)! for n > 0,

7.7 t-Distribution

7.1 Uniform Distribution and is defined as I'(z) = [ #*~le *dx. Notation X ~ t(n)
. . . . Properties
Notati X ~ 7.3 Exponential Distribution ; i}
otation U(a,b) JIEX = Y%, Y; with Y; idid. ~ Exp(\) then Experiment
Experiment | What is the probability that we Notation X ~ Exp(\) X~ Ga(a, V) Support rz €R
pick the value z knowing that all - Ga(1,A) = Ezp(X) F("+1) o\ — 2t
\{alues betwee.n a and b are equally Experiment | What is the probability that there . . . fx(x) 7271 (1 + i)
likely to be picked? are z units of time until the next 7.5 Beta Distribution vnal () n
event, knowing that on average A _
Support z € [a,b] events happen in one unit of time? Notation X ~ Beta(ca, 8) Fx (=) tna (use t-table)
1
— a<z<b
fx (@) {Oa else Support x € [0, 00) Experiment | - E[X] 0
—Azx > Var [X n
0 r<a fx(z) {36 z;g Support z € [0,1] ar [X] n—2
x
Fx(x) =2 a<z<b A k) 0,1]
1 z>b Fy (2) 1—e? >0 fx (x) B(a, B) ’ Properties
E[X] a+b X 0 z <0 0 else - X ~t(n=1) = X ~ Cauchy
(o)l X ~ ~
o s | ! Bio )= 228 X il ) = 0L
Var [X] 5 A N - If n > 30 we can usually approximate the t-
Var [X] 1 Fx () fg Ix(t)dt distribution with a normal distribution.
A2 o
o e . E[X o s .
7.2 Normal Distribution X] a+p 7.8 Cauchy Distribution
Properties Var [X] apf
Notation X ~ N(p,0?) (a+B8)2(a+B+1) Notation X ~ Cauchy(t, s)
- Memoryless:
Experiment | What is the probability that we PIX>m+n|X >m]=P[X >n] Experiment | -
pick the number z knowing that 7.6 x? Distribution
all values hav'e a mean of p and a 7.4 Gamma Distribution Support zeR
standard deviation of o? Notation X ~ x2(k) @ 1
x(z -
i ~ —t\2
Support z€R Notation X ~ Ga(a, ) Experiment | - s (1 + (214) )
1 _(@=w)? . . e 1 1 T —t
Ix (@) e 20 Experiment | What is the probability that there R . Fx(z) Z 4+ = arctan ( )
2702 are x units of time until the next Support T e [0’100) orz € (0,00) if k=1 2 7 S
Fx (z) o (a;—u> . (use table) a events, knowing that on aver- kia:%_le_% >0 E[X] undefined
o age.)\ events happen in one unit fx(x) 292 F(%)
E[X] u of time? 0 <0 Var [X] undefined
Var [X] o2 Support xz eRT Fx () I fx(t)dt
1 —1,-Xz
——AYz* e x>0
T (@) - E[X k
Ix () { 0 2 <0 [X]
Fx (@) S px (o) Var[X] | 2k
@
E[X] 3 Properties
o - Let X1,...,Xpn iid. X; ~ N(0,1) then YV =
Var [ X —
— 1 P ar[X] v S, X2 ~ x2(n)
— 30 — 20 — o H + o + 20 + 30
poso w20 poe e X ~xP(n) e X ~Gala= 2,0 =1)
Properties Note
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