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1 Probability

1.1 Basics

Def. 1.1: Sample Space

The sample space, denoted by Ω 6= ∅, is the
set of all possible outcomes of an experiment,
it can be finite or infinite.

Def. 1.2: Event

An event A is a subset of the sample space
A ⊆ Ω, or an element of the powerset of the
sample space A ∈ 2Ω.

Def. 1.3: Observable Event Set

The set of all observable events is denoted by
F , where F ⊆ 2Ω.

Note

· Usually if Ω is countable F = 2Ω, however some-
times many events are excluded from F since it’s
not possible for them to happen.

Def. 1.4: σ−Algebra

The set F is called a σ−Algebra if:

(i) Ω ∈ F
(ii) ∀A ⊆ Ω : A ∈ F ⇒ AC ∈ F

(iii) ∀(An)n∈N : An ∈ F ⇒
⋃∞
n=1 An ∈ F

Def. 1.5: Probability Function

P : F → [0, 1] is a probability function if it
satisfies the following 3 axioms:

(i) ∀A ∈ F : P [A] ≥ 0

(ii) P [Ω] = 1

(iii) P [
⋃∞
n=1 An] =

∑∞
n=1 P [An]

where An are disjunct.

Properties (derived from the 3 axioms):

· P
[
AC
]

= 1− P [A]

· P [∅] = 0

· A ⊆ B ⇒ P [A] ≤ P [B]

· P [A ∪B] = P [A] + P [B]− P [A ∩B]

Theorem 1: Inclusion-Exclusion

Let A1, . . . , An be a set of events, then:

P

[
n⋃
i=1

Ai

]
=

n∑
k=1

(−1)k−1Sk

where

Sk =
∑

I⊆{1,...,n}
|I|=k

P

⋂
i∈I

Ai



1.2 Discrete Probability

We talk about discrete probability if Ω is countable
(finite or infinite).

Def. 1.6: Laplace Space

If Ω = {ω1, . . . , ωN} with |Ω| = N where all ωi
have the same probability pi = 1

N
, Ω is called

Laplace Space and P has a discrete unifrom
distribution. For some event A we have:

P [A] =
|A|
|Ω|

Note

· The discrete uniform distribution exists only if Ω
is finite.

1.3 Conditional Probability

Def. 1.7: Conditional Probability

Given two events A and B with P [A] > 0, the
probability of B given A is defined as:

P [B|A] ..=
P [B ∩A]

P [A]

Theorem 2: Total Probability

Let A1, . . . , An be a set of disjunct events
∀i 6= j : Ai ∩ Aj = ∅ where

⋃n
i=1 Ai = Ω,

then for any event B ⊆ Ω:

P [B] =

n∑
i=1

P [B|Ai]P [Ai]

Theorem 3: Bayes’ Rule

Let A1, . . . , An be a set of disjunct events
∀i 6= j : Ai ∩ Aj = ∅ where

⋃n
i=1 Ai = Ω,

with P [Ai] > 0 for all i = 1, . . . , n, then for an
event B ⊆ Ω with P [B] > 0 we have:

P [Ak|B] =
P [B|Ak]P [Ak]∑n
i=1 P [B|Ai]P [Ai]

Note

· If we have only two events A and B it simplifies

to: P [A|B] =
P [B|A]P [A]

P [B]

1.4 Independence

Def. 1.8: Independence

A set of events A1, . . . , An are independent if
for all m ∈ N with {k1, . . . , km} ⊆ 1, . . . , n we
have:

P

[
m⋂
i=1

Aki

]
=

m∏
i=1

P [Aki ]

Properties

With only two events:

· A and B are independent iff P [A∩B] = P [A]P [B]

· A and B are independent iff P [B|A] = P [B]

2 Combinatorics

Let n be the number of total objects and k be the
number of object that we want to select (k = n if
we consider all objects), then:

Def. 2.1: Permutation

A permutation Pn(k) is an arrangement of el-
ements where we care about ordering.

(i) Repetition not allowed:

Pn(k) =
n!

(n− k)!

(ii) Repetition allowed:

Pn(k) = nk

Def. 2.2: Combination

A combination Cn(k) is an arrangement of el-
ements where we do not care about ordering.

(i) Repetition not allowed:

Cn(k) =
(n
k

)
=
Pn(k)

k!
=

n!

k!(n− k)!

(ii) Repetition allowed:

Cn(k) =
(n+ k − 1

k

)
Note

· Repetition is the same as replacement, since by
replacing an object in the set we’ll be able to use
it again.

Properties

· 0! = 1

·
(n
k

)
= n!

k!(n−k)!

·
(n

0

)
=
(n
n

)
= 1

·
(n

1

)
=
( n
n−1

)
= n

·
(n
k

)
=
( n
n−k

)
·
(n
k

)
=
(n−1
k−1

)
+
(n−1
k

)
·
∑n
k=0

(n
k

)
= 2n
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3 Random Variables

3.1 Basics

Def. 3.1: Random Variable

Let (Ω,F , P ) be a probability space, then a
random variable (RV) on Ω is a function:

X : Ω→W(X) ⊆ R

if the image W(X) is countable X is called a
discrete random variable, otherwise it’s called
a continuous random variable.

Def. 3.2: Probability Density

The probability density function (PDF) fX :
R→ R of a RV X, is function defined as:

fX(x) ..= P [X = x] ..= P [{ω | X(ω) = x}]

with X discrete we use pX(t) instead of fX(t).

Properties

· fX = 0 and fX ≥ 0 outside of W (X).

·
∫∞
−∞ fX(t)dt = 1

Def. 3.3: Cumulative Distribution

The cumulative distribution function (CDF)
FX : R → [0, 1] of a RV X, is a function de-
fined as:

FX(x) ..= P [X ≤ x] ..= P [{ω | X(ω) ≤ x}]

if the PDF is given it can be expressed with:

FX(x) =



∑
xi≤x

pX(xi) X discr.

∫ x

−∞
fX(t)dt X cont.

Properties

· Monotone: If t ≤ s then FX(t) ≤ FX(s).

· R-continuous: If t > s then lim
t→s

FX(t) = FX(s).

· Limits: lim
t→−∞

FX(t) = 0 ∧ lim
t→∞

FX(t) = 1.

· P [a < X ≤ b] = FX(b)− FX(a) =
∫ b
a fX(t)dt

· P [X > t] = 1− P [X ≤ t] = 1− FX(t)

· d
dx
FX(x) = fX(x)

3.2 Expected Value

Def. 3.4: Expected Value

Let X be a RV, then the expected value is de-
fined as:

E [X] = µ ..=



∑
xk∈W(X)

xk · pX(xk) X discr.

∫ ∞
−∞

x · fX(x)dx X cont.

Properties

· E [X] ≤ E [Y ] if ∀ω : X(ω) ≤ Y (ω)

· E
[∑n

i=0 aiXi
]

=
∑n
i=0 aiE [Xi]

· E [X] =
∑∞
j=1 P [X ≥ j], if W (X) ⊆ N0.

· E
[∑∞

i=0 Xi
]
6=
∑∞
i=0 E [Xi]

· E [E [X]] = E [X]

· E [XY ]2 ≤ E
[
X2
]
E
[
Y 2
]

· E
[
n∏
i=0

Xi

]
=

n∏
i=0

E [xi] for indep. X1, . . . , Xn.

Theorem 4: E of Functions

Let X be a RV and Y = g(X), with g : R→ R,
then:

E [Y ] =



∑
xk∈W(X)

g(xk) · pX(xk) X discr.

∫ ∞
−∞

g(x) · fX(x)dx X cont.

Def. 3.5: Moment-Generating Function

Let X be a RV, then the moment-generating
function of X is defined as:

MX(t) ..= E
[
etX

]

3.3 Variance

Def. 3.6: Variance

Let X be a RV with E
[
X2
]
< ∞, then the

variance of X is defined as:

Var [X] ..= E
[
(X − E [X])2

]
with the extended form:

Var [X] =



(∑
k

pX(xk) · x2
k

)
− µ2 X discr.

∫ ∞
−∞

x2 · fX(x)dx− µ2 X cont.

Properties

· 0 ≤ Var [X] ≤ E
[
X2
]

· Var [X] = E
[
X2
]
− E [X]2

· Var [aX + b] = a2Var [X]

· Var [X] = Cov(X,X)

· Var

[
n∑
i=0

aiXi

]
=

n∑
i=0

a2
iVar [Xi] + 2

∑
1≤i<j≤n

aiajCov(Xi, Xj)

· Var

[
n∑
i=0

aiXi

]
=

n∑
i=0

Var [Xi]

if ∀(i 6= j) : Cov(Xi, Xj) = 0.

Def. 3.7: Standard Deviation

Let X be a RV with E
[
X2
]
< ∞, then the

standard deviation of X is defined as:

σ(X) = sd(X) ..=
√

Var [X]

3.4 Other Functions

Def. 3.8: Covariance

Let X,Y be RVs with finite expected value,
then the covariance of X and Y is defined as:

Cov (X,Y ) ..= E [(X − E [X])(Y − E [Y ])]

= E [XY ]− E [X]E [Y ]

Note

· The covariance is a measure of correlation be-
tween two random variables, Cov (X,Y ) > 0
if Y tends to increase as X increases and
Cov (X,Y ) < 0 if Y tends to decrease as X in-
creases. If Cov (X,Y ) = 0 then X and Y are
uncorrelated.

Properties

· Cov(aX, bY ) = abCov(X,Y )

· Cov(X + a, Y + b) = Cov(X,Y )

· Cov(a1X1 + a2X2, b1Y1 + b2Y2) =
a1b1Cov(X1, Y1) + a1b2Cov(X1, Y2) +
a2b1Cov(X2, Y1) + a2b2Cov(X2, Y2)

Def. 3.9: Correlation

Let X,Y be RVs with finite expected value,
then the correlation of X and Y is defined as:

Corr(X,Y ) =
Cov (X,Y )√

Var [X] ·Var [Y ]

Note

· Correlation is the same as covariance but normal-
ized with values between −1 and 1.

· X,Y indep. ⇒ Corr(X,Y ) = Cov(X,Y ) = 0.

Def. 3.10: Indicator Function

The indicator function IA for a set (event) A
is defined as:

IA(ω) ..=

{
1 w ∈ A
0 w ∈ AC
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3.5 Joint Probability

Def. 3.11: Joint PDF

The joint probability density function fX :
Rn → [0, 1] with X = (X1, . . . , Xn) is a func-
tion defined as:

fX(x1, . . . , xn) ..= P [X1 = x1, . . . , Xn = xn]

with X discrete we use pX(x) instead of
fX(x).

Def. 3.12: Joint CDF

The joint cumulative distribution function
FX : Rn → [0, 1] with X = (X1, . . . , Xn) is
a function defined as:

FX(x1, . . . , xn) ..= P [X1 ≤ x1, . . . , Xn ≤ xn]

if the joint PDF is given it can be expressed
with:

FX(x) =



∑
t1≤x1

· · ·
∑

tn≤xn

pX(t) discr.

∫ x1

−∞
· · ·
∫ xn

−∞
fX(t)dt cont.

where t = (t1, . . . , tn) and x = (x1, . . . , xn).

Properties

·
∂nFX(x1, . . . , xn)

∂x1, . . . , ∂xn
= fX(x1, . . . , xn)

Def. 3.13: Marginal PDF

The marginal probability density function
fXi : R → [0, 1] of Xi given a joint PDF
fX(x1, . . . , xn), is defined as:

fXi (ti) =



∑
t1

· · ·
∑
ti−1

∑
ti+1

· · ·
∑
tn

pX(t) discr.

∫ ∞
−∞
· · ·
∫ ∞
−∞

fX(t)dt̃ cont.

where t̃ = (t1, . . . , ti−1, ti+1, . . . , tn), and in
the discrete case tk ∈ W(Xk).

Note

· The idea of the marginal probability is to ignore
all other random variables and consider only the
one we’re interested to.

Def. 3.14: Marginal CDF

The marginal cumulative distribution function
FXi : R → [0, 1] of Xi given a joint CDF
FX(x1, . . . , xn), is defined as:

FXi (xi) = lim
xj 6=i→∞

FX(x1, . . . , xn)

Def. 3.15: Conditional Distribution

The conditional distribution fX|Y : R→ [0, 1]
is defined as:

fX|Y (x|y) ..= P [X = x|Y = y]

=
P [X = x, Y = y]

P [Y = y]

=
Joint PDF

Marginal PDF

with X and Y discrete we write pX|Y (x|y) in-
stead of fX|Y (x|y).

3.6 Independence

Def. 3.16: Independence

The RVs X1, . . . , Xn are independent if:

FX1,...,Xn (x1, . . . , xn) =

n∏
i=1

FXi (xi)

similarly if their PDF is absolutely continuous
they are independent if:

fX1,...,Xn (x1, . . . , xn) =

n∏
i=1

fXi (xi)

Theorem 5: Function Independence

If the RVs X1, . . . , Xn are independent where
fi : R → R is a function with Yi ..= fi(Xi)
then also Y1, . . . , Yn are independent.

Theorem 6

The RVs X1, . . . , Xn are independent iff
∀Bi ⊆W (Xi):

P [X1 ∈ B1, . . . , Xn ∈ Bn] =

n∏
i=1

P [Xi ∈ Bi]

3.7 Joint Functions

Def. 3.17: Joint Expected Value

The joint expected value of a RV Y =
g(X1, . . . , Xn) = g(X) is defined as:

E [Y ] =



∑
t1

· · ·
∑
tn

g(t)pX(t) discr.

∫ ∞
−∞
· · ·
∫ ∞
−∞

g(t)fX(t)dt cont.

where t = (t1, . . . , tn), and in the discrete case
tk ∈ W(Xk).

Def. 3.18: Conditional Expected Value

The conditional expected value of RVs X,Y is:

E [X|Y ] (y) =



∑
x∈R

x · pX|Y (x|y) discr.

∫ ∞
−∞

x · fX|Y (x|y)dx cont.

Properties

· E [E [X|Y ]] = E [X]

· E [X|Y ] (y) = E [X] if X,Y indep.

Def. 3.19

Let Y = g(X1, . . . , Xn) = g(X), then:

P [Y ∈ C] =

∫
AC

fX(t)dt

whereAC = {x = (x1, . . . , xn) ∈ Rn | g(x) ∈ C}
and t = (t1, . . . , tn).

Theorem 7: Transformation

Let F be continuous and a strictly increasing
CDF and let X ∼ U(0, 1), then:

Y = F−1(X)⇒ FY = F

3.8 Evaluation

Guide 3.1: Monte Carlo Integration

Let I =
∫ b
a g(x)dx be the integral of a function

that is hard to evaluate, then:

I =

∫ b

a
g(x)dx

= (b− a)

∫ b

a
g(x)

1

b− a
dx

= (b− a)

∫ ∞
−∞

g(x)fU (x)dx

= (b− a) · E [g(U)]

where U(a, b) is uniformely distributed. Then
by the LLN know that we can approximate
E [g(U)] by randomly sampling u1, u2, . . .
from U(a, b).

b− a
n

n∑
i=1

g(ui) −−−−→
n→∞

(b− a) · E [g(U)]

Guide 3.2: Transformation

If we have a RV X with known CDF (strictly
increasing) with Y = g(X), to evaluate FY
and fY we proceed as follows:

(i) FY (t) = P [g(X) ≤ t] =
∫
Ag

fX(s)ds

(ii) fY (t) =
dFY (t)
dt

where Ag = {s ∈ R | g(s) ≤ t}

Guide 3.3: Sum Convolution

Let X1, . . . , Xn be independent RVs then the
sum Z = X1 + · · ·+Xn has a PDF fZ(z) eval-
uated with a convolution between all PDFs:

fZ(z) = (fX1
(x1) ∗ · · · ∗ fXn (xn))(z)

in the special case that Z = X + Y :

fZ(z) =



∑
xk∈W(X)

pX(xk)pY (z − xk) discr.

∫ ∞
−∞

fX(t)fY (z − t)dt cont.

Note

· Often is much easier to use properties of the RVs
to find the sum instead of evaluating the convo-
lution.
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Guide 3.4: Product

Let X,Y be independent RVs then to evaluate
the PDF and CDF of Z = XY we proceed as
follows:

FZ(z) = P [XY ≤ z]
= P

[
X ≥ z

Y
, Y < 0

]
+ P

[
X ≤ z

Y
, Y > 0

]
=

∫ 0

−∞

[∫ ∞
z
y

fX(x)dx

]
fY (y)dy

+

∫ ∞
0

[∫ z
y

−∞
fX(x)dx

]
fY (y)dy

where the PDF is:

fZ(z) =
d

dz
FZ(z) =

∫ ∞
−∞

fY (y)fX

(
z

y

)
1

|y|
dy

Guide 3.5: Quotient

Let X,Y be independent RVs then to evaluate
the PDF and CDF of Z = X

Y
we proceed as

follows:

FZ(z) = P

[
X

Y
≤ z
]

= P [X ≥ zY, Y < 0] + P [X ≤ zY, Y > 0]

=

∫ 0

−∞

[∫ ∞
yz

fX(x)dx

]
fY (y)dy

+

∫ ∞
0

[∫ yz

−∞
fX(x)dx

]
fY (y)dy

where the PDF is:

fZ(z) =
d

dz
FZ(z) =

∫ ∞
−∞
|y| fX(yz)fY (y)dy

3.9 Sum and Average

Let X1, . . . , Xn be i.i.d RVs with finite mean µ,
standard deviation σ, and let Zn be the standard-
ization of a RV Y defined as:

Sum Average

Y Sn =
n∑
i=1

Xi Xn =
1

n

n∑
i=1

Xi

E[Y ] nµ µ

Var [Y ] nσ2 σ2

n

σ(Y )
√
nσ

σ
√
n

Zn
Sn − nµ
σ
√
n

Xn − µ
σ/
√
n

3.10 Convergence

Def. 3.20: Probability Convergence

Let X1, X2, . . . and Y be RV on the same
probability space, then:

(i) X1, X2, . . . converges to Y in prob. if:

∀ε > 0 lim
n→∞

P [|X − Y | > ε] = 0

(ii) X1, X2, . . . converges to Y in Lp for p > 0
if:

lim
n→∞

E [|Xn − Y |p] = 0

(iii) X1, X2, . . . converges to Y , P-almost
surely if:

P
[

lim
n→∞

Xn = Y
]

=

P
[{
w ∈ Ω | lim

n→∞
Xn(ω) = Y (ω)

}]
= 1

Def. 3.21: Distribution Convergence

Let X1, X2, . . . and Y be RV, with CDF
FX1 , FX2 , . . . and FY then X1, X2, . . . con-
verges to Y in distribution if:

∀x ∈ R lim
n→∞

FXn (x) = FY (x)

3.11 Inequalities

Theorem 8: Markov-Inequality

Let X be a RV and g :W(X)→ [0,∞) be an
increasing function, then for all c with g(c) > 0
we have:

P [X ≥ c] ≤
E [g(X)]

g(c)

Note: for practical uses usually g(x) = x.

Theorem 9: Chebyshev-Inequality

Let X a RV with Var [X] <∞ then if b > 0:

P [|X − E [X]| ≥ b] ≤
Var [X]

b2

Theorem 10

Let X1, . . . , Xn i.i.d. where ∀t : MX(t) < ∞
then for any b ∈ R:

P [Sn ≥ b] ≤ exp

(
inf
t∈R

(n logMX(t)− tb)
)

Theorem 11: Chernoff-Inequality

Let X1, . . . , Xn, with Xi i.i.d ∼ Be(pi) and
Sn =

∑n
i=1 where µn ..= E [Sn] =

∑n
i=1 pi

then if δ > 0:

P [Sn ≥ (1 + δ)µn] ≤
(

eδ

(1 + δ)1+δ

)µn
≈ O(e−n)

3.12 Limit Theorems

Theorem 12: Law of Large Numbers

Let X1, X2, . . . be i.i.d RVs with finite mean
µ. Let Xn be the average of the first n vari-
ables, then the law of large numbers (LLN)
says that (different versions):

(i) Weak

Xn =
1

n

n∑
i=1

−−−−→
n→∞

µ

(ii) Weak

∀ε P
[∣∣Xn − µ

∣∣ > ε
]
−−−−→
n→∞

0

(iii) Weak

∀ε P
[∣∣Xn − µ

∣∣ < ε
]
−−−−→
n→∞

1

(iv) Strong

P
[{
ω ∈ Ω | Xn(ω) −−−−→

n→∞
µ
}]

Note

· The law of large numbers says that if we aver-
age n i.i.d. RV, then the more n increases the
more the average is probable to be close to the
expected value of the RVs: Xn ≈ µ.

Properties

· lim
n→∞

1
n

∑n
i=1 f(Xi) = E [f(X)]

Theorem 13: Central Limit Theorem

Let X1, . . . , Xn be i.i.d RVs with finite mean
µ and standard deviation σ. Let Zn be a stan-
dardization, then for any z ∈ R:

lim
n→∞

FZn (z) = lim
n→∞

P [Zn ≤ z] = Φ(z)

Where a practical application is that for n big:

(i) P [Zn ≤ z] ≈ Φ(z)

(ii) Zn ≈ N (0, 1)

(iii) Sn ≈ N
(
nµ, nσ2

)
(iv) Xn ≈ N

(
µ, σ

2

n

)
Note

· The idea is that any (normalized) sum or average
of RVs approaches a (standard) normal distribu-
tion as n gets bigger.
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4 Estimators

4.1 Basics

Let X1, . . . , Xn i.i.d. RVs, drawn accord-
ing to some distribution Pθ parametrized by
θ = (θ1, . . . , θm) ∈ Θ where Θ is the set of all
possible parameters for the selected distribution.
Then the goal is to find the best estimator θ̂ ∈ Θ
such that θ̂ ≈ θ since the real θ cannot be known
exactly from a finite sample.

Def. 4.1: Estimator

An estimator θ̂j for a parameter θj is a RV

θ̂j(X1, . . . , Xn) that is symbolized as a func-
tion of the observed data.

Def. 4.2: Estimate

An estimate θ̂j(x1, . . . , xn) is a realization of
the estimator RV, it’s real value for the esti-
mated parater.

Def. 4.3: Bias

The bias of an estimator θ̂ is defined as:

Biasθ[θ̂] ..= Eθ[θ̂]− θ = Eθ[θ̂ − θ]

we say that an estimator is unbiased if:

Biasθ[θ̂] = 0 or Eθ[θ̂] = θ

Def. 4.4: Mean Squared Error

The mean squared error (MSE) of an estima-

tor θ̂ is defined as:

MSEθ[θ̂] ..= E[(θ̂−θ)2] = Varθ[θ̂]+(Eθ[θ̂]−θ)2

Def. 4.5: Consistent

A squence of estimators θ̂(n) of the parameter
θ is called consistent if for any ε > 0:

Pθ[|θ̂(n) − θ| > ε] −−−−→
n→∞

0

Note

· The idea is that an estimator is consistent only
if as the sample data increases the estimator ap-
proaches the real parameter.

4.2 Maximum-Likelihood Method

Def. 4.6: Likelihood Function

The likelhood function L is defined as:

L(x1, . . . , xn; θ) =

{
p(x1, . . . , xn; θ) discr.

f(x1, . . . , xn; θ) cont.

Def. 4.7: MLE

The maximum likelhood estimator θ̂ for θ is
defined as:

θ̂ ∈
{

arg max
θ∈Θ

L(X1, . . . , Xn; θ)

}

Guide 4.1: Evaluation

Given a i.i.d. sample of data x1, . . . , xn and a
distribution Pθ:

(i) Identify the parameters θ = (θ1, . . . , θm)
for the given distribution (e.g. if normal
θ = (θ1 = µ, θ2 = σ2)).

(ii) Find the log likelihood, we use the log of
the likelhood since it’s much easier to dif-
ferentiate afterwards, and the maximum
of L is preserved (∀θj):

g(θj) ..= logL(x1, . . . , xn; θj)

= log

n∏
i=1

f(xi; θj)

the goal here is to split f into as many
sums as possible using log properties
(easier to differentiate).

(iii) Find the maximum of the log likelihood,
note that if the distribution is simple it
might be easier to use the normal like-
lihood function and manually find the
max, and if the distribution is hard we
might have to use iterative methods in-
stead of differentiation. Then for each
parameter θj :

dg

dθj

MAX
= 0

Often we want to find inside the deriva-
tive set to 0 a sum or average (Sn, Xn).

(iv) State the final MLE, where each param-
eter estimator is the max found for θj :

θ̂MLE = (θ̂1, . . . , θ̂m)

4.3 Method of Moments

Def. 4.8: Theoretical Moments

Let X be a RV, then:

(i) The kth moment of X is:
µk ..= mk = E[Xk]

(ii) The kth central moment of X is:
µ∗k

..= m∗k = E[(X − µ)k]

(iii) The kth absolut moment of X is:
Mk

..= E[|X|k] (not used for MOM)

Def. 4.9: Sample Moments

Let X be a RV, then given a sample x1, . . . , xn
using the Law of Large numbers:

(i) The kth moment is evaluated as:

µ̂k(x1, . . . , xn) =
1

n

n∑
i=1

xki

(ii) The kth central moment is evaluated as:

µ̂∗k(x1, . . . , xn) =
1

n

n∑
i=1

(xi − µ̂1)k

Guide 4.2: Evaluation

Given a i.i.d. sample of data x1, . . . , xn and a
distribution Pθ:

(i) Identify the parameters θ = (θ1, . . . , θm)
for the given distribution.

(ii) Since the distribution is given the ex-
pected value Eθ [X] = g1(θ1, . . . , θm) and
variance Varθ [X] = g2(θ1, . . . , θn) are
known. The functions gi with 0 ≤ i ≤ m
are parametrized by θ and each of them
is equal to a thoretical moment.

(iii) Since we have also the sample data to
work with we can equate the theortical
moments to the moment estimators:

g1(θ1, . . . , θm) = µ̂1(x1, . . . , xn)

g2(θ1, . . . , θm) = µ̂∗2(x1, . . . , xn)...
gi(θ1, . . . , θm) = µ̂∗i (x1, . . . , xn)...
gm(θ1, . . . , θm) = µ̂∗m(x1, . . . , xn)

(iv) Now since there are m equations and m
unknown thetas we can solve for each θ
and set it as the estimator.

θ̂MOM = (θ̂1, . . . , θ̂m)

Note

· The first moment is the expected value, estimated
with: µ̂1(x1, . . . , xn) = xn (average) and the sec-
ond central moment is the variance, estimated
with: µ̂∗2(x1, . . . , xn) = 1

n

∑n
i=1(xi − xn)2. Note

that we always use the central moments for i > 1.

· If we are given only the PDF of a distribution
we can still evaluate the theoretical moments by
solving the expected value integral (or summation
if discrete).

· To check if θ̂i is unbiased we solve Eθ[θ̂i]
(parametrized by θ is important) and check
whether it equals θ.

Properties

Useful to simplify MLM:

·
∏n
i=1 a · xi = an

∏n
i=1 xi

· log
(∏n

i=1 xi
)

=
∑n
i=1 log(xi)

· log
(∑n

i=1 e
a·xi

)
= a

∑n
i=1 xi
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5 Hypothesis Testing

Let X1, . . . , Xn i.i.d. RVs, is distributed accord-
ing to some distribution Pθ parametrized by θ =
(θ1, . . . , θm) ∈ Θ where Θ = Θ0 ∪ ΘA is the set
of all possible parameters for the selected distribu-
tion divided in two distinct subsets Θ0 ∩ ΘA = ∅.
Then the goal is to test wheter the unknown θ lies
inside Θ0 or ΘA, this decision system is written as
H0 : θ ∈ Θ0 (null hypothesis) and HA : θ ∈ ΘA
(alternative hypothesis).

Def. 5.1: Test

Concretely a test is composed of a function of
the sample t(x1, . . . , xn) = t and a rejection
region K ⊆ R. The decision of the test is then
written as RV:

It∈K =

{
1, t ∈ K : reject H0

0, t /∈ K : do not reject H0

Def. 5.2: Test Statistic

The test statistic T (X1, . . . , Xn) is a RV, it is
distributed according to some standard statis-
tic (z, t, χ2).

5.1 Steps

(i) Model: identify the model Pθ, or which dis-
tribution does Xi i.i.d. ∼ Pθ follow and what
are the known and unknown parameters of θ.

(ii) Hypothesis: identify the null and alternative
hypothesis, in the null hypothesis we should
explicitely state the parameters value given.

(iii) Statistic: identify the test statistic T of H0

and HA based on the sample size n and the
amount of known parameteres of Pθ.

(iv) H0 Statistic: state the distribution of the test
statistic under H0.

(v) Rejection Region: based on the test statistic
and the significance level α evaluate the rejec-
tion region K.

(vi) Result: based on the observed data and the
rejection region reject H0 or don’t reject H0.

(vii) Errors (optional): compute the probability
of error, significance and power to decide how
reliable is the test result.

5.2 Hypotheses

To test an hypothesis we must establish the null H0

and alternative HA hypotheses. The null hypoth-
esis is the default set of parameters θ, or what we
expect to happen if our experiment fails and the
alternative hypothesis is rejected.

Right-Tailed (RT)

H0 : θ = θ0, HA = θ > θ0

c

H0 HA

←− Accept H0 Reject H0 −→

αβ

1 − β1 − α

Left-Tailed (LT)

H0 : θ = θ0, HA = θ < θ0

c

HA H0

←− Reject H0 Accept H0 −→

α β

1 − α1 − β

Two-Tailed (TT)

H0 : θ = θ0, HA = θ 6= θ0

HA HAH0

←− Reject H0 Reject H0 −→Accept H0

ββα
2

α
2

1 − α1 − β 1 − β

5.3 Statistic

Xi n σ2 Statistic

N (µ, σ2) any known z-Test

N (µ, σ2) small unknown t-Test

any any any LR-Test

LR-Test

Def. 5.3: Likelihood-Ratio

Let L(x1, . . . , xn; θ) be the likelhood function
where θ0 ∈ Θ0 and θA ∈ ΘA, then the
Likelihood-Ratio is defined as:

R(x1, . . . , xn; θ0, θA) ..=
L(x1, . . . , xn; θ0)

L(x1, . . . , xn; θA)

Note

· The intuition is that the likelihood function will
tend to be the highest near the true value of θ,
thus by evaluating the Likelihood-Ratio R be-
tween θ0 and θA we can conclude that if R < 1
the probability of getting the observed data is
higher under HA where if R > 1 the probability
of getting the obeserved data is higher under H0.

Theorem 14: Neyman-Pearson

Let T ..= R(x1, . . . , xn; θ0, θA) be the test
statistic, K ..= [0, c) be the rejection region
and α∗ ..= Pθ0 [T ∈ K] = Pθ0 [T < c]. Then
for any other test (T ′,K′) with Pθ0 [T ′ ∈
K′] ≤ α∗ we have:

PθA
[
T ′ ∈ K′

]
≤ PθA [T ∈ K]

Note

· The idea of the lemma is that making a decision
based on the Likelihood-Ratio Test with T and
K will maximise the power of the test, any other
test will have a smaller power. Thus given a fixed
α∗, this is the best way to do hypothesis testing.

z-Test

Def. 5.4: z-Test

The z-test is used when the data follows a nor-
mal distribution and σ2 is known.

(i) Statistic Under H0:

T =
Xn − µ0

σ/
√
n
∼ N (0, 1)

(ii) Rejection Region:

· K RT
= [z1−α,∞)

· K LT
= (−∞, zα]

· K TT
= (−∞, zα

2
] ∪ [z1−α

2
,∞)

Properties

· Φ−1(α) = zα = −z1−α
· z0.95 = 1.645, z0.975 = 1.960

t-Test

Def. 5.5: t-Test

The t-test is used when the data follows a nor-
mal distribution, n is small (usually n < 30)
and σ2 is unknown.

(i) Statistic Under H0:

T =
Xn − µ0

S/
√
n
∼ t(n− 1)

where S2 = 1
n−1

∑n
i=1(Xi −Xn)2

(ii) Rejection Region:

· K RT
= [tn−1,1−α,∞)

· K LT
= (−∞, tn−1,α]

· K TT
= (−∞, tn−1,α

2
] ∪ [tn−1,1−α

2
,∞)

Properties

· tm,α = −tm,1−α
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Two-Sample Tests

Def. 5.6: Paried Two-Sample Test

The paried two-sample test is used when
we have Y1, . . . , Yn i.i.d. ∼ N (µY , σ

2
Y ) and

Z1, . . . , Zn i.i.d. ∼ N (µZ , σ
2
Z) and Xi = Yi −

Zi, then X1, . . . , Xn i.i.d. ∼ N (µY − µZ , σ =
σ2
Y − σ

2
Z), thus if σ is known we proceed with

a z-test on X otherwise with a t-test on X.

Def. 5.7: Unpaired Two-Sample Test

The unparied two-sample test is used when
we have X1, . . . , Xn i.i.d. ∼ N (µX , σ

2
X) and

Y1, . . . , Yn i.i.d. ∼ N (µY , σ
2
Y ) for Xi, Yj inde-

pendent.
For known σX , σY :

(i) Hypothesis: H0 : µX − µY = µ0

(ii) Statistic Under H0:

T =
Xn − Y n − µ0√

σ2
X
n

+
σ2
Y
m

∼ N (0, 1)

(iii) Rejection Region:

· K RT
= [z1−α,∞)

· K LT
= (−∞, zα]

· K TT
= (−∞, zα

2
] ∪ [z1−α

2
,∞)

For unknown σX = σY > 0:

(i) Hypothesis: H0 : µX − µY = µ0

(ii) Statistic Under H0:

T =
Xn − Y n − µ0

S
√

1
n

+ 1
m

∼ tn+m−2

(iii) Rejection Region (d ..= n+m− 2):

· K RT
=
[
td,1−α,∞

)
· K LT

=
(
−∞, td,α

]
· K TT

= (−∞, td,α
2

] ∪ [td,1−α
2
,∞)

5.4 Errors, Significance, Power

We use the test statistic T distributed according to
Pθ to evaluate the probability of errors:

H0 Don’t Reject (T /∈ K) Reject (T ∈ K)

Type 1 Error (α)

true Correct Decision False Alarm

False Positive

Type 2 Error (β)

false Missed Alarm Correct Decision

False Negative

Probabilities:

· Type 1 Error

P [T ∈ K | H0 true] = Pθ0 [T ∈ K] = α

· Type 2 Error

P [T /∈ K | H0 false] = PθA [T /∈ K] = β

· Significance Level

P [T /∈ K | H0 true] = Pθ0 [T /∈ K] = 1− α
· Power

P [T ∈ K | H0 false] = PθA [T ∈ K] = 1− β
Note:

· The significance level should be small (near 0)
and the power large (near 1).

· Smaller α⇒ Smaller power.

5.5 P-Value

Def. 5.8: P-Value

The p-value is the probability of getting the
observed value of the test statistic T (ω) =
t(x1, . . . , xn), or a value with even greater ev-
idence against H0, if the null hypothesis is ac-
tually true.

· p-value
RT
= Pθ0 [T ≥ T (ω)]

· p-value
LT
= Pθ0 [T ≤ T (ω)]

· p-value
TT
= Pθ0 [|T | ≥ T (ω)]

Note

· We can then still decide the test and reject H0

if p-value < α (α = 0.01 very strong evidence,
α = 0.05 strong evidence, α > 0.1 weak evi-
dence).

· The p-value can also be viewed as the smallest α∗

such that H0 is rejected given the observed value
of the test statistic t(x1, . . . , xn).

5.6 Confidence Interval

Def. 5.9: Confidence Interval

Given α (type-1 error) and an unknown
parameter θ the confidence interval
C(X1, . . . , Xn) ..= [a, b] tells us that with
probability at least 1 − α the real parameter
θ is contained in C (θ ∈ C). Evaluated as:

1− α ≤ Pθ[θ ∈ C(X1, . . . , Xn)]

= Pθ[a < θ < b]

Where a and b are:

(i) For θ ..= µ and known σ:

a ..= Xn − zα
2

σ√
n

b ..= Xn + zα
2

σ√
n

(ii) For θ ..= µ and unknown σ:

a ..= Xn − tn−1,1−α
2

S√
n

b ..= Xn + tn−1,1−α
2

S√
n

(iii) For θ ..= σ2 and unknown µ, σ:

a ..=
(n−1)S2

χ2
n−1,1−α

2

b ..=
(n−1)S2

χ2
n−1, α

2
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6 Discrete Distributions

6.1 Discrete Uniform Distribution

Notation X ∼ U(a, b)

Experiment What is the probability that we
pick the value x knowing that all
n = b−a+1 values between a and
b are equally likely to be picked?

Support x ∈ {a, a+ 1, . . . , b− 1, b}

pX(x)
1

n

FX(x)
x− a+ 1

n
E [X] a+b

2

Var [X]
(b−a+1)2−1

12

6.2 Bernulli Distribution

Notation X ∼ Be(p)

Experiment What is the probability of success
or failure is success has probabil-
ity p?

Support x ∈ {0, 1}

pX(x)

{
1− p x = 0

p x = 1

FX(x)


0 x < 0

1− p 0 ≤ x ≤ 1

1 x > 1

E [X] p

Var [X] p(1− p)

6.3 Binomial Distribution

Notation X ∼ Bin(n, p)

Experiment What is the probability of x suc-
cesses in n trials if one success has
probability p?

Support x ∈ {0, 1, . . . , n}

pX(x)
(n
x

)
· px · (1− p)n−x

FX(x)
x∑
i=1

pX(i)

E [X] np

Var [X] np(1− p)

Properties

· Poisson Approximation: If X ∼ Bin(n, p) and
n� 0, np < 5, then X ∼ Poi(np).

· Normal Approximation: If X ∼ Bin(n, p) and
n � 0, np > 5, n(1 − p) > 5 with p =
P [a < X ≤ b], then:

p ≈ Φ

(
b+ 1

2
−np√

np(1−p)

)
− Φ

(
a+ 1

2
−np√

np(1−p)

)
.

6.4 Geometric Distribution

Notation X ∼ Geo(p)

Experiment What is the probability of one
success in x trials if one success
has probability p?

Support x ∈ {1, 2, . . . }

pX(x) (1− p)x−1 · p

FX(x) 1− (1− p)x

E [X]
1

p

Var [X]
1− p
p2

Properties

· Memoryless:
P [X > m+ n | X ≥ m] = P [X > n]

· Sum: (
∑n
i=1Xi ∼ Geo(p)) ∼ NB(n, p)

6.5 Negative Binomial Distribution

Notation X ∼ NB(r, p)

Experiment What is the probability of r suc-
cesses in x trials if one success has
probability p?

Support x ∈ {r, r + 1, r + 2, . . . }

pX(x)
(x− 1

r − 1

)
· (1− p)x−r · pr

FX(x)
x∑
i=1

pX(i)

E [X]
r

p

Var [X]
r(1− p)
p2

6.6 Hypergeometric Distribution

Notation X ∼ HGeom(n,m, r)

Experiment What is the probability of picking
x elements of type 1 out of m, if
there are r elements of type 1 and
n− r elements of type type 2?

Support x ∈ {1, 2, . . . ,min(m, r)}

pX(x)
(r
x

)(n− r
m− x

)/(n
m

)
FX(x)

x∑
i=1

pX(i)

E [X]
rm

n

Var [X]
(n− r)nm(n−m)

(2n− r)2(n− 1)

Note

· The items are picked without replacement.

6.7 Poisson Distribution

Notation X ∼ Poi(λ)

Experiment What is the probability that x
events happen in one unit of time
knowing that on average λ events
happen on one unit of time?

Support x ∈ {0, 1, . . . } = N0

pX(x) e−λ
λx

x!

FX(x) e−λ
x∑
i=0

λi

i!

E [X] λ

Var [X] λ

Properties

· Let X =
∑n
i=1Xi ∼ Poi(λi) where Xi are inde-

pendend, then X ∼ Poi
(∑n

i=1 λi
)

· If X = c+ Y and Y ∼ Poi(λ) then X ∼ Poi(λ).
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7 Continuous Distributions

7.1 Uniform Distribution

Notation X ∼ U(a, b)

Experiment What is the probability that we
pick the value x knowing that all
values between a and b are equally
likely to be picked?

Support x ∈ [a, b]

fX(x)

{
1
b−a a ≤ x ≤ b
0 else

FX(x)


0 x < a
x−a
b−a a ≤ x ≤ b
1 x > b

E [X]
a+ b

2

Var [X]
(b− a)2

12

7.2 Normal Distribution

Notation X ∼ N (µ, σ2)

Experiment What is the probability that we
pick the number x knowing that
all values have a mean of µ and a
standard deviation of σ?

Support x ∈ R

fX(x)
1

√
2πσ2

e
− (x−µ)2

2σ2

FX(x) Φ
(
x−µ
σ

)
, (use table)

E [X] µ

Var [X] σ2

µ − 3σ µ − 2σ µ − σ µ µ + σ µ + 2σ µ + 3σ

68.3%

27.2%

4.2%

0.2%

Properties

· Y ∼ N (µY , σ
2
Y ) and Z ∼ N (µZ , σ

2
Z) then

X + Y ∼ N (µY + µZ , σ
2
Y + σ2

Z)

7.3 Exponential Distribution

Notation X ∼ Exp(λ)

Experiment What is the probability that there
are x units of time until the next
event, knowing that on average λ
events happen in one unit of time?

Support x ∈ [0,∞)

fX(x)

{
λe−λx x ≥ 0

0 x < 0

FX(x)

{
1− e−λx x ≥ 0

0 x < 0

E [X]
1

λ

Var [X]
1

λ2

Properties

· Memoryless:
P [X > m+ n | X ≥ m] = P [X > n]

7.4 Gamma Distribution

Notation X ∼ Ga(α, λ)

Experiment What is the probability that there
are x units of time until the next
α events, knowing that on aver-
age λ events happen in one unit
of time?

Support x ∈ R+

fX(x)

{
1

Γ(α)
λαxα−1e−λx x ≥ 0

0 x < 0

FX(x)
∫ x
0 fX(t)dt

E [X]
α

λ

Var [X]
α

λ2

Note

· The gamma function Γ(z) is the continuous anal-
ogous of the factorial: Γ(n) = (n− 1)! for n > 0,
and is defined as Γ(z) =

∫∞
0 xz−1e−xdx.

Properties

· If X =
∑α
i=1 Yi with Yi i.i.d. ∼ Exp(λ) then

X ∼ Ga(α, λ)

· Ga(1, λ) = Exp(λ)

7.5 Beta Distribution

Notation X ∼ Beta(α, β)

Experiment -

Support x ∈ [0, 1]

fX(x)


xα−1(1− x)β−1

B(α, β)
x ∈ [0, 1]

0 else

B(α, β) =
Γ(α)Γ(β)
Γ(α+β)

FX(x)
∫ x
0 fX(t)dt

E [X]
α

α+ β

Var [X]
αβ

(α+ β)2(α+ β + 1)

7.6 χ2 Distribution

Notation X ∼ χ2(k)

Experiment -

Support x ∈ [0,∞) or x ∈ (0,∞) if k = 1

fX(x)


1

2
k
2 Γ( k

2
)
x
k
2
−1e−

x
2 x ≥ 0

0 x < 0

FX(x)
∫ x
−∞ fX(t)dt

E [X] k

Var [X] 2k

Properties

· Let X1, . . . , Xn i.i.d. Xi ∼ N (0, 1) then Y =∑n
i=1 X

2
i ∼ χ2(n)

· X ∼ χ2(n)⇔ X ∼ Ga(α = n
2
, λ = 1

2
)

7.7 t-Distribution

Notation X ∼ t(n)

Experiment -

Support x ∈ R

fX(x)
Γ(n+1

2
)

√
nπΓ

(
n
2

) (1 +
x2

n

)−n+1
2

FX(x) tn,x (use t-table)

E [X] 0

Var [X]
n

n− 2

Properties

· X ∼ t(n = 1)⇒ X ∼ Cauchy

· X ∼ t(n→∞)⇒ X ∼ N (0, 1)

· If n > 30 we can usually approximate the t-
distribution with a normal distribution.

7.8 Cauchy Distribution

Notation X ∼ Cauchy(t, s)

Experiment -

Support x ∈ R

fX(x)
1

πs
(

1 +
(
x−t
s

)2)
FX(x)

1

2
+

1

π
arctan

(
x− t
s

)
E [X] undefined

Var [X] undefined
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