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1 Algebra

1.1 Exponential Properties

(i) x0 = 1

(ii) xnxm = xn+m

(iii) xn

xm
= xn−m = 1

xm−n

(iv) (xn)m = xnm

(v)
(
x
y

)n
= xn

yn

(vi) x−n = 1
xn

(vii) 1
x−n = xn

(viii)
(
x
y

)−n
=
( y
x

)n
= yn

xn

(ix) x
n
m =

(
x

1
m

)n
= (xn)

1
m = m

√
xn

1.2 Logarithm Properties

(i) logn(0) = Undefined

(ii) logn(1) = 0

(iii) logn(n) = 1

(iv) logn(nx) = x

(v) nlogn(x) = x

(vi) logn(xr) = r logn(x) 6= logrn(x) = (logn(x))r

(vii) logn(xy) = logn(x) + logn(y)

(viii) logn

(
x
y

)
= logn(x)− logn(y)

(ix) − logn(x) = logn
(
1
x

)
(x)

log(x)
log(n)

= logn(x)

1.3 Radical Properties

(i) n
√
x = x

1
n

(ii) n
√
xy = n

√
x n
√
y

(iii) m
√

n
√
x = mn

√
x

(iv) n

√
x
y

=
n√x
n√y

(v) n
√
xn = x, if n is odd

(vi) n
√
xn = |x|, if n is even

1.4 Absolute Value Properties

(i) |x| =
{
x if x ≥ 0

−x if x < 0

(ii) |x| ≥ 0

(iii) | − x| = |x|
(iv) |ca| = c|a|, if c > 0

(v) |xy| = |x||y|
(vi) |x2| = x2

(vii) |xn| = |x|n

(viii)
∣∣∣xy ∣∣∣ =

|x|
|y|

(ix) |a− b| = b− a, if a ≤ b
(x) |a+ b| ≤ |a|+ |b|

(xi) |a| − |b| ≤ |a− b|

1.5 Factorization

(i) x2 − a2 = (x+ a)(x− a)

(ii) x2 + 2ax+ a2 = (x+ a)2

(iii) x2 − 2ax+ a2 = (x− a)2

(iv) x2 + (a+ b)x+ ab = (x+ a)(x+ b)

(v) x3 + 3ax2 + 3a2x+ a3 = (x+ a)3

(vi) x3 − 3ax2 + 3a2x− a3 = (x− a)3

(vii) x3 + a3 = (x+ a)(x2 − ax+ a2)

(viii) x3 − a3 = (x− a)(x2 + ax+ a2)

(ix) x2n − a2n = (xn − an)(xn + an)

1.6 Complete The Square

ax2 + bx + c = 0 ⇒ a(x + d)2 + e = 0

· d = b
2a

· e = c− b2

4a

1.7 Quadratic Formula

ax2 + bx + c = 0 ⇒ x =
−b±

√
b2−4ac

2a

· If b2 − 4ac > 0⇒ Two real unequal solutions.

· If b2 − 4ac = 0⇒ Two repeated real solutions.

· If b2 − 4ac < 0⇒ Two complex solutions.

2 Functions

2.1 Domain

· Fractions denominator 6= 0.

· Logarithms if the base is a number, the argument
must be > 0, if the base depends on a variable, the
base must be > 0∧ 6= 1.

· Roots with even index, the argument must be
≥ 0, for roots with odd index the domain is R.

· Arccos/Arcsin the agrument must be ∈ [−1, 1].
For other trig functions we use trig properties to
change them to cos and sin.

· Exponential base > 0.

2.2 Parity

We consider the partiy of the function only if
Dom(f) is mirrored on the origin:
(Dom(f) = [−2, 2]∨ (−∞,∞)∨ (−∞,−1]∪ [1,∞]).

· Even function (with respect to the y axis) if:
f(−x) = f(x).

· Odd function (with respect to the origin) if:
f(−x) = −f(x).

· In every other case the function is neither even nor
odd.

2.3 Axis Intercept

· X intercept can be many; is calculated by solving

f(x) = 0. If f(x) =
g(x)
h(x)

we solve just g(x) = 0.

The points are then (xi, 0).

· Y intercept can be just one; is calculated by
setting x = 0, the point is then (0, f(0)). If
x = 0 /∈ Dom(f) there is no Y intercept.

2.4 Sign

The sign can only change when there is a x inter-
cept (if the function is continuous), thus if we solve
f(x) ≥ 0 we get both the X intercepts and where
the function is positive.

2.5 Asymptotes/Holes

· Hole at point (x0, fsemplified(x0)) if plugging the

critical point x0 in the numerator of f gives 0
0

.

· Vertical asymptote at a critical point x0 if:
lim

x→x−0
f(x) = ±∞ (left at x = x0)

lim
x→x+0

f(x) = ±∞ (right at x = x0).

· Horizontal aysmptote (if domain is unlimited at
±∞) if:
limx→+∞ f(x) = k (right y = k)
limx→−∞ f(x) = h (left y = h).

· Oblique aysmptote (if domain is unlimited at
±∞) if:

limx→+∞
f(x)
x

= m ∧ limx→+∞[f(x) − mx] = q
(right at y = mx+ q)

limx→−∞
f(x)
x

= m ∧ limx→−∞[f(x) − mx] = q
(left at y = mx+ q).

2.6 Monotonicity

A funciton f is:

· Monotonically increasing if:
∀x, y : x ≤ y ⇒ f(x) ≤ f(y)

· Monotonically decreasing if:
∀x, y : x ≤ y ⇒ f(x) ≥ f(y)

· Strictly increasing if:
∀x, y : x < y ⇒ f(x) < f(y)

· Strictly decreasing if:
∀x, y : x < y ⇒ f(x) > f(y)

2.7 Max, Min

Calculate f ′(x) = 0, then all the solutions xi are
our candidates, where for a small ε > 0:

· Max if: f ′(xi − ε) > 0 ∧ f ′(xi + ε) < 0.

· Min if: f ′(xi − ε) < 0 ∧ f ′(xi + ε) > 0.

· Inflection if (use sign table):
f ′(xi − ε) < 0 ∧ f ′(xi + ε) < 0, or
f ′(xi − ε) > 0 ∧ f ′(xi + ε) > 0

If f ′(x) > 0, then f is strictly increasing.
If f ′(x) < 0, then f is strictly decreasing.
If f ′(x) = 0 f is constant.

2.8 Convexity

· Convex (∪) if: f ′′(x) > 0

· Concave (∩) if: f ′′(x) < 0

2.9 Inflection Points

Calculate f ′′(x) = 0, then all the solutions xi are
our candidates (except where f(x) is not defined),
where for a small ε > 0:

· Increasing Inflection if:
f ′′(xi − ε) < 0 ∧ f ′′(xi + ε) > 0

· Decreasing Inflection if:
f ′′(xi − ε) > 0 ∧ f ′′(xi + ε) < 0

· Otherwise nothing happens on xi.
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3 Trigonometry

3.1 Unit Circle

3.2 Domain and Range

· sin : R −→ [−1, 1]

· cos : R −→ [−1, 1]

· tan :
{
x ∈ R

∣∣ x 6= π
2

+ kπ
}
−→ R

· cot : {x ∈ R | x 6= kπ} −→ R

· csc : {x ∈ R | x 6= kπ} −→ R \ (−1, 1)

· sec :
{
x ∈ R

∣∣ x 6= π
2

+ kπ
}
−→ R \ (−1, 1)

· sin−1 : [−1, 1] −→
[
−π

2
, π
2

]
· cos−1 : [−1, 1] −→ [0, π]

· tan−1 : R −→
[
−π

2
, π
2

]
3.3 Pythagorean Identities

(i) sin2(x) + cos2(x) = 1

(ii) tan2(x) + 1 = sec2(x)

(iii) 1 + cot2(x) = csc2(x)

3.4 Periodicity Identities

(i) sin(x± 2π) = sin(x)

(ii) cos(x± 2π) = cos(x)

(iii) tan(x± π) = tan(x)

(iv) cot(x± π) = cot(x)

(v) csc(x± 2π) = csc(x)

(vi) sec(x± 2π) = sec(x)

3.5 Reciprocal Identities

(i) cot(x) = 1
tan(x)

(ii) csc(x) = 1
sin(x)

(iii) sec(x) = 1
cos(x)

3.6 Quotient Identities

(i) tan(x) =
sin(x)
cos(x)

(ii) cot(x) =
cos(x)
sin(x)

3.7 Sum Identities

(i) sin(x+ y) = sin(x) cos(y) + cos(x) sin(y)

(ii) cos(x+ y) = cos(x) cos(y)− sin(x) sin(y)

(iii) tan(x+ y) =
tan(x)+tan(y)
1−tan(x) tan(y)

3.8 Difference Identities

(i) sin(x− y) = sin(x) cos(y)− cos(x) sin(y)

(ii) cos(x− y) = cos(x) cos(y) + sin(x) sin(y)

(iii) tan(x− y) =
tan(x)−tan(y)
1+tan(x) tan(y)

3.9 Double Angle Identities

(i) sin(2x) = 2 sin(x) cos(x)

(ii) cos(2x) = cos2(x)− sin2(x)

(iii) cos(2x) = 2 cos2(x)− 1⇒ cos2(x) =
cos(2x)+1

2

(iv) cos(2x) = 1− 2 sin2(x)⇒ sin2(x) =
1−cos(2x)

2

(v) tan(2x) =
2 tan(x)

1−tan2(x)

3.10 Co-Function Identities

(i) sin
(
π
2
− x
)

= cos(x)

(ii) cos
(
π
2
− x
)

= sin(x)

(iii) tan
(
π
2
− x
)

= cot(x)

(iv) cot
(
π
2
− x
)

= tan(x)

(v) csc
(
π
2
− x
)

= sec(x)

(vi) sec
(
π
2
− x
)

= csc(x)

3.11 Even-Odd Identities

(i) sin(−x) = − sin(x)

(ii) cos(−x) = cos(x)

(iii) tan(−x) = − tan(x)

(iv) cot(−x) = − cot(x)

(v) csc(−x) = − csc(x)

(vi) sec(−x) = sec(x)

3.12 Half-Angle Identities

(i) sin
(
x
2

)
= ±

√
1−cos(x)

2

(ii) cos
(
x
2

)
= ±

√
1+cos(x)

2

(iii) tan
(
x
2

)
= ±

√
1−cos(x)

2

(iv) tan
(
x
2

)
=

1−cos(x)
sin(x)

(v) tan
(
x
2

)
=

sin(x)
1+cos(x)

3.13 Sum-to-Product Formulas

(i) sin(x) + sin(y) = 2 sin
(
x+y
2

)
cos
(
x−y
2

)
(ii) sin(x)− sin(y) = 2 sin

(
x−y
2

)
cos
(
x+y
2

)
(iii) cos(x) + cos(y) = 2 cos

(
x+y
2

)
cos
(
x−y
2

)
(iv) cos(x)− cos(y) = −2 sin

(
x+y
2

)
cos
(
x−y
2

)
3.14 Product-to-Sum Formulas

(i) sin(x) sin(y) = 1
2

[cos(x− y)− cos(x+ y)]

(ii) cos(x) cos(y) = 1
2

[cos(x− y) + cos(x+ y)]

(iii) sin(x) cos(y) = 1
2

[sin(x+ y) + sin(x− y)]

(iv) cos(x) sin(y) = 1
2

[sin(x+ y)− sin(x− y)]

3.15 Tangent expression

If u = tan(x
2

) :
[
dx = 2

1+u2 du
]

(i) cos(x) = 1−u2

1+u2

(ii) sin(x) = 2u
1+u2

(iii) tan(x) = 2u
1−u2

3.16 Hyperbolic Functions

(i) sinh(x) = ex−e−x

2

(ii) cosh(x) = ex+e−x

2

(iii) tanh(x) = ex−e−x

ex+e−x

3.17 Laws of Sines

(i)
sin(α)
a

=
sin(β)
b

=
sin(γ)
c

3.18 Laws of Cosines

(i) a2 = b2 + c2 − 2bc cos(α)

(ii) b2 = a2 + c2 − 2ac cos(β)

(iii) c2 = a2 + b2 − 2ab cos(γ)

3.19 Degrees

x

y

0◦

30◦

60◦
90◦

120◦

150◦

180◦

210◦

240◦

270◦
300◦

330◦

360◦

π
6

π
4

π
3

π
2

2π
3

3π
4

5π
6

π

7π
6

5π
4

4π
3

3π
2

5π
3

7π
4

11π
6

2π

(√
3
2 ,

1
2

)

(√
2
2 ,
√
2
2

)

(
1
2 ,
√
3
2

)

(
−
√
3
2 ,

1
2

)

(
−
√
2
2 ,
√
2
2

)

(
− 1

2 ,
√
3
2

)

(
−
√
3
2 ,− 1

2

)

(
−
√
2
2 ,−

√
2
2

)

(
− 1

2 ,−
√
3
2

)

(√
3
2 ,− 1

2

)

(√
2
2 ,−

√
2
2

)

(
1
2 ,−

√
3
2

)

(−1, 0) (1, 0)

(0,−1)

(0, 1)
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4 Limits, Sup and Inf

Definition 4.1 (Limits). Let f(x) be a func-
tion defined on D ⊆ R, let x0 be a limit point
in D, then we say that limx→x0 f(x) = L ∈ R
if for all ε there exists a δ such that:

∀x ∈ D : 0 < |x− x0| < δ ⇒ |f(x)− L| < ε

Sequence Definition:
lim
x→x0

f(x) = L⇔ ∀(xn) where lim
n→∞

xn = x0, then

lim
n→∞

f(xn) = L

4.1 Limit Properties

Assume that limx→x0 f(x) and limx→x0 g(x) exists
and that c ∈ R, then:

(i) lim
x→x0

[cf(x)] = c lim
x→x0

f(x)

(ii) lim
x→x0

[f(x)± g(x)] = lim
x→x0

f(x)± lim
x→x0

g(x)

(iii) lim
x→x0

[f(x)g(x)] = lim
x→x0

f(x) lim
x→x0

g(x)

(iv) lim
x→x0

[
f(x)

g(x)

]
=

lim
x→x0

f(x)

lim
x→x0

g(x)
, lim
x→x0

g(x) 6= 0

(v) lim
x→x0

[f(x)]n =

[
lim
x→x0

f(x)

]n
(vi) lim

x→x0

[
n
√
f(x)

]
= n

√
lim
x→x0

f(x)

(vii) lim
x→x0

x = x0

4.2 Chain Rule

Let f and g be continuous, and given
limx→x0 f(g(x)) of composed function we can
solve limx→x0 g(x) = y0, then:

lim
x→x0

f(g(x)) = lim
y→y0

f(y)

4.3 Exponential Rule

Let f and g be continuous, where limx→x0 f(x) =
f(x0) > 0 and limx→x0 g(x) = g(x0) (where both
limits exists), then:

lim
x→x0

f(x)g(x) = f(x0)g(x0)

4.4 Root Trick

lim
x→x0

√
f − g = lim

x→x0

√
f − g ·

√
f + g
√
f + g

4.5 E-Log Trick

lim
x→x0

fg = lim
x→x0

eg ln(f)

Theorem 1: L’Hôpital’s Rule

If by plugging x0 in
f(x)
g(x)

we get 0
0

or ±∞±∞ ,

then:

lim
x→x0

f(x)

g(x)
= lim
x→x0

f ′(x)

g′(x)
= L⇔ L 6= ±∞

Theorem 2: Limit Squeeze Theorem

Let lim
x→x0

f(x), if g(x) ≤ f(x) ≤ h(x), ∀x, and

lim
x→x0

g(x) = lim
x→x0

h(x) = L, then:

lim
x→x0

f(x) = L

4.6 Important Limits

· lim
n→∞

(
1 +

x

n

)n
= ex

· lim
n→0

an − 1

n
= ln(a)

· lim
n→∞

ln(n) =∞

· lim
n→∞

loga(1 + n)

n
=

1

ln(a)

· lim
n→0

loga(1 + n)

n
=

1

ln(a)

· lim
n→0

sin(n)

n
= 1

· lim
n→0

1− cos(n)

n
= 0

· lim
n→0

1− cos(n)

n2
=

1

2

· lim
n→0

tan(n)

n
= 1

· lim
n→∞

n!

nn
= 0

· lim
n→0

en − 1

n
= 1

· lim
n→∞

n
√
n! =∞

· lim
n→∞

n
√
n = 1

4.7 Strategy

Given a limit lim
x→x0

f(x):

1. Is f(x0) solvable normally (polynomials and
radicals) ?

2. Try to decompose the limit with the properties
and go back to step 1 for each piece.

3. If it contains a radical expession try with the
root trick, pay attention that if it’s not a square
root you can try with the third root factoriza-
tion, but for bigger roots it’s probabily another
method. If the root contains the entire limit it
can be put out (PR6).

4. If it contains a trigonometric function try
with the Squeeze Theorem, if the trig func-
tion contains another function go with the com-
posed function decomposition. If it simplifies
well with the series definition of cos, sin, or tan
try to simplify the sum and solve each piece.

5. If it’s a composed function try the chain rule.

6. If it’s raised to an unusual power try the E-
Log trick.

7. If you get 0
0

or ±∞±∞ use l’Hopital.

8. If you get ±∞ · 0 or 0 · ±∞ tranform the func-
tion into a fraction so that you get 0

0
or or ±∞±∞

then use l’Hopital.

4.8 Supremum and Infimium

Definition 4.2.

· The Supremum of a set S denoted sup(S) =
u is a number u that satisfies the condition
that u is an upper bound of S and for any
upper bound v of S, u ≤ v.

· The Infimium of a set S denoted inf(S) = u
is a number u that satisfies the condition that
u is an lower bound of S and for any lower
bound v of S, u ≥ v.

· If the supremum doesn’t exists we can write:
sup(S) =∞.

· If the infimium doesn’t exist we can write:
inf(S) = −∞.

· To prove that the minimum doesn’t exist:
∀ε∃n0 ∈ N : f(x) ≤ inf(a) + ε ∀x ≥ n0.

· To prove that the maximum doesn’t exist:
∀ε∃n0 ∈ N : f(x) ≤ sup(a)− ε ∀x ≥ n0.

5 Continuity

Definition 5.1 (Pointwise Contiunous).
A function f : [a, b]→ R is pointwise contin-
uous at x0 ∈ [a, b] if limx→x0 f(x) = f(x0),
or:

∀ε∃δ ∀x : (|x− x0| < δ ⇒ |f(x)− f(x0)| < ε)

Definition 5.2 (Uniformly Continuous).
A function f : [a, b] → R is uniformly con-
tinuous if it’s continuous at every point in it’s
domain ∀x0 ∈ [a, b] : limx→x0 f(x) = f(x0),
or:

∀ε∃δ ∀x0, x : (|x−x0| < δ ⇒ |f(x)−f(x0)| < ε)

Definition 5.3 (Lipschitz Continuous).
A function f : [a, b]→ R is Lipschitz contin-
uous if:

∃L∀x, x0 : |f(x)− f(x0)| ≤ L|x− x0|

5.1 Properties

Let f and g be continuous, then also f ± g, f · g,
f
g
⇔ g 6= 0 and f ◦ g are continuous.

(i) Polynomials: All polynomials P (x) are
pointwise continuous on any bounded interval.

(ii) Bijective: If f : [a, b]→ R is continuous and
monotone, then it’s bijective and f−1 is also
continuous.

Theorem 3: Intermediate Value

Let f be a continuous function on [a, b] and
let s be a number with f(a) < s < f(b), then
there exists at least one solution to f(x) = s.

Theorem 4: Extreme Value

Let f : I → R be a continuous function on
I = [a, b] then there exist two numbers c ∈ I
and d ∈ I such that:

∀x ∈ I : m = f(c) ≤ f(x) ≤ f(d) = M

Where m is a lower bound and M an upper
bound.
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6 Derivatives

Definition 6.1 (Derivative). The derivative
of f(x) with respect to x is:

df

dx
= f ′(x) = lim

h→0

f(x+ h)− f(x)

h

= lim
x0→x

f(x0)− f(x)

x0 − x

6.1 Properties

(i) d
dx

(c) = 0

(ii) (cf)′ = cf ′(x)

(iii) (f ± g)′ = f ′(x) + g′(x)

(iv) (fg)′ = f ′g + fg′

(v)
(
f
g

)′
= f ′g−fg′

g2

(vi) d
dx

([f(x)]n) = n[f(x)]n−1f ′(x)

(vii) d
dx

(f(g(x)) = f ′(g(x))g′(x)

(viii) [f−1]′(x) = 1
f ′(f−1(x))

6.2 Common Derivatives

· d
dx

(x) = 1

· d
dx

(|x|) = sign(x)

· d
dx

(ex) = ex

· d
dx

(ax) = ax ln(a)

· d
dx

( 1
x

) = − 1
x2

· d
dx

√
x = 1

2
√
x

· d
dx

(ln(f(x))) =
f ′(x)
f(x)

= 1
x

if f(x) = x

· d
dx

(ln |x|) = 1
x
, x 6= 0

· d
dx

(loga(x)) = 1
xln(a)

, x > 0

· d
dx

(sin(x)) = cos(x)

· d
dx

(cos(x)) = − sin(x)

· d
dx

(tan(x)) = sec2(x) = tan2(x) + 1

· d
dx

(cot(x)) = − csc2(x)

· d
dx

(sec(x)) = sec(x) tan(x)

· d
dx

(csc(x)) = − csc(x) cot(x)

· d
dx

(sin−1(x)) = 1√
1−x2

· d
dx

(cos−1(x)) = − 1√
1−x2

· d
dx

(tan−1(x)) = 1
1+x2

· d
dx

(sinh(x)) = cosh(x)

· d
dx

(cosh(x)) = sinh(x)

· d
dx

(tanh(x)) = 1
cosh(x)

= 1− tanh2(x)

· d
dx

(sinh−1(x)) = 1√
x2+1

· d
dx

(cosh−1(x)) = 1√
x2−1

· d
dx

(tanh−1(x)) = 1√
1−x2

6.3 Differentiable

Theorem 5: Differentiable

A function f is differentiable at a point x0 iff:

lim
x→x+0

f(x)− f(x0)

x− x0
= lim
x→x−0

f(x)− f(x0)

x− x0

(i) Tangent Line: The function f has a tangent
point at a if and only if f is differentiable at a.
The equation of the tangent line is:

y = f ′(a)(x− a) + f(a)

(ii) Continuous: If f(x) is differentiable at a,
then f is continuous at a. The converse is not
true (e.g. f(x) = |x|, a = 0).

(iii) Classes: If f : [a, b] → R is differentiable k
times we say that f ∈ Ck([a, b]) where C is
called classification function. If f is differen-
tiable infinite times we say that f is smooth
(f ∈ C∞([a, b])).

Theorem 6: Inverse Function Theorem

Let f : [a, b] −→ R be continuous, differen-
tiable and stricly increasing where ∀x ∈ [a, b] :
f ′(x) > 0 and

c = inf
a<x<b

f(x) < sup
a<x<b

f(x) = d

then:

· f : ]a, b[→ ]c, d[ is bijective.

· f−1 : ]c, d[ → ]a, b[ is differentiable with
[f−1]′(x) = 1

f ′(f−1(x))

Theorem 7: Mean Value Theorem

Let f : [a, b] −→ R be continuous and differ-
entiable on ]a, b[, then exists c ∈ ]a, b[ with:
f(b) = f(a) + f ′(c)(b− a), or:

f ′(c) =
f(b)− f(a)

b− a
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7 Integrals

Definition 7.1 (Riemann-Integral). Given:

· A continuous function f(x) : [a, b] −→ R

· A partition P ..= {a = x0, ..., xn−1, xn = b}
where Ii = [xi−1, xi]

· A set of points ξ ..= {ξ1, ..., ξn} where
ξi ∈ Ii = [xi−1, xi].

Then the Riemann-Sum is defined as:

S(f, P, ξ) ..=

n∑
i=1

f(ξi) · (xi − xi−1)

Where the Riemann-Integral is:∫ b

a
f(x)dx ..= lim

n→∞

n∑
i=1

f(ξi) · (xi − xi−1)

(i) Over Sum:

S(f, P ) ..= lim
n→∞

n∑
i=1

sup
x∈Ii

f(x) · (xi − xi−1)

Infimum of the over sum:

inf
P
S(f, P ) ..= (b− a) · lim

n→∞

1

n

n∑
i=1

sup
x∈Ii

f(x)

(ii) Under Sum:

S(f, P ) ..= lim
n→∞

n∑
i=1

inf
x∈Ii

f(x) · (xi − xi−1)

Supremum of the under sum:

sup
P
S(f, P ) ..= (b− a) · lim

n→∞

1

n

n∑
i=1

inf
x∈Ii

f(x)

Ii =

[
a+

(i− 1)(b− a)

n
, a+

i(b− a)

n

]
(iii) Inequality:

sup
p∈P (I)

S(f, P ) ≤ inf
p∈P (I)

S(f, P )

(iv) Monotone: A monotone function f : I → R
is Riemann-Integrable over I.

(v) Continuous: A continuous function f : I →
R is Riemann-Integrable over I.

Theorem 8: Riemann-Integrable

A function f is Riemann-Integrable iff:

sup
P1

S(f, P ) = inf
P2

S(f, P )

More formally:

∀ε∃P : |S(f, P )− S(f, P )| < ε

7.1 Properties

(i)
∫ a
a f(x)dx = 0

(ii)
∫ b
a cf(x) = c

∫ b
a f(x)

(iii)
∫ b
a f(x) + g(x)dx =

∫ b
a f(x)dx±

∫ b
a g(x)dx

(iv)
∫ b
a f(x)dx = −

∫ a
b f(x)dx

(v)
∫ b
a f(x)dx =

∫ c
a f(x)dx+

∫ b
c f(x)dx

(vi)
∫ b
a cdx = c(b− a)

(vii) If f(x) ≥ g(x), then:∫ b
a f(x) ≥

∫ b
a g(x)

(viii) If m ≤ f(x) ≤M , then:

m(b− a) ≤
∫ b
a f(x)dx ≤M(b− a)

(ix) If
∣∣∣∫ ba f(x)dx

∣∣∣ ≤ ∫ ba |f(x)|dx

7.2 Common Integrals (+C)

Basic

·
∫
kdx = kx

·
∫
xndx = xn+1

n+1
, n 6= −1

·
∫

1
xn

= −1
(n−1)xn−1

·
∫
x−1dx =

∫
1
x
dx = ln |x|

·
∫
axdx = ax

ln(a)

·
∫
exdx = ex

·
∫

loga(x)dx = x loga(x)− x loga(e)

Trigonometirc

·
∫

sin(x)dx = − cos(x)

·
∫

cos(x)dx = sin(x)

·
∫

tan(x)dx = − ln | cos(x)| = ln | sec(x)|
·
∫

cot(x)dx = ln | sin(x)|
·
∫

sec(x)dx = ln | sec(x) + tan(x)|
·
∫

csc(x)dx = − ln | csc(x) + cot(x)|

·
∫

sin−1(x)dx = x sin−1(x) +
√

1− x2

·
∫

cos−1(x)dx = x cos−1(x)−
√

1− x2

·
∫

tan−1(x)dx = x tan−1(x)−
√

12 ln(1 + x2)

·
∫

cot−1(x)dx = x cot−1(x) +
√

12 ln(1 + x2)

·
∫

sin2(x)dx = 1
2

(x− sin(x) cos(x)

·
∫

cos2(x)dx = 1
2

(x+ sin(x) cos(x)

·
∫

tan2(x)dx = tan(x)− x
·
∫

cot2(x)dx = − cot(x)− x
·
∫

sec2(x)dx = tan(x)

·
∫

csc2(x)dx = − cot(x)

·
∫

csc(x) cot(x)dx = − csc(x)

·
∫

1
sin(x)

dx = ln
∣∣∣ 1−cos(x)

sin(x)

∣∣∣
·
∫

1
cos(x)

dx = ln
∣∣∣ 1+sin(x)

cos(x)

∣∣∣
·
∫

1
sin2(x)

dx = − cot(x)

·
∫

1
cos2(x)

dx = tan(x)

·
∫

1
1+sin(x)

dx =
− cos(x)
1+sin(x)

·
∫

1
1+cos(x)

dx =
sin(x)

1+cos(x)

·
∫

1
1−sin(x)

dx =
cos(x)

1−sin(x)

·
∫

1
1−cos(x)

dx =
− sin(x)
1−cos(x)

·
∫

sin(ax)dx = − 1
a

cos(ax)

·
∫

cos(ax)dx = 1
a

sin(ax)

·
∫

tan(ax)dx = − 1
a

ln(cos(ax))

·
∫
x sin(ax)dx = − 1

a
x cos(ax) + 1

a2
sin(ax)

·
∫
x cos(ax)dx = 1

a
x sin(ax) + 1

a2
cos(ax)

·
∫

sinh(x)dx = cosh(x)

·
∫

cosh(x)dx = sinh(x)

·
∫

tanh(x)dx = ln(cosh(x))

·
∫

coth(x)dx = ln | sinh(x)|

·
∫

sinh−1(x)dx = x sinh−1(x)−
√
x2 + 1

·
∫

cosh−1(x)dx = x cosh−1(x)−
√
x2 − 1

·
∫

tanh−1(x)dx = x tanh−1(x) + 1
2

ln(1− x2)

·
∫

coth−1(x)dx = x coth−1(x) + 1
2

ln(x2 − 1)

Logarithmic

·
∫

ln(ax)dx = x ln(ax)− x

·
∫
x ln(ax)dx = x2

4
(2 ln(ax)− 1)

·
∫ ln(ax)

x
dx = 1

2
(ln(ax)2

Exponential

·
∫
eaxdx = 1

a
eax

·
∫
xexdx = (x− 1)ex

·
∫
xeaxdx =

(
x
a
− 1
a2

)
eax

Rational Functions

·
∫

1√
x

= 2
√
x

·
∫

(x+ a)ndx =
(x+a)n+1

n+1
, n 6= −1

·
∫
x(x+ a)ndx =

(x+a)n+1((n+1)x−a)
(n+1)(n+2)

·
∫
ax+b
cx+d

dx = ax
c
− ad−bc

c2
ln |cx+ d|

·
∫

1
(x+a)2

dx = − 1
x+a

·
∫

1
ax+b

dx = 1
a

ln |ax+ b|

·
∫

1
a2+x2

dx = 1
a

tan−1
(
x
a

)
·
∫

1
ax2+bx+c

dx = 2√
4ac−b2

tan−1

(
2ax+b√
4ac−b2

)
·
∫

1
(x−a)(x−b)dx = 1

a−b ln
∣∣∣x−ax−b

∣∣∣
·
∫

x
a2+x2

dx = 1
2

ln
∣∣a2 + x2

∣∣
·
∫

x2

a2+x2
dx = x− a tan−1

(
x
a

)
·
∫

x3

a2+x2
dx = 1

2
x2 − 1

2
a2 ln

∣∣a2 + x2
∣∣

·
∫

x
(x+a)2

dx = a
a+x

+ ln |a+ x|

·
∫

x
ax2+bx+c

= 1
2a

ln
∣∣ax2 + bx+ c

∣∣ −
b

a
√

4ac−b2
tan−1

(
2ax+b√
4ac−b2

)
Square Roots

·
∫ √

x− adx = 2
3

(x− a)
3
2

·
∫ √

ax+ bdx =
(

2b
3a

+ 2x
3

)√
ax+ b

·
∫ √

x2 + adx = 1
2
x
√
x2 + a+ a

2
ln |x+

√
x2 + a|

·
∫ √

a2 − x2dx = 1
2
x
√
a2 − x2 + a2

2
sin−1

(
x
a

)
·
∫
x
√
x− adx = 2

3
a(x− a)

3
2 + 2

5
(x− a)

5
2

·
∫
x
√
x2 ± a2dx = 1

3
(x2 ± a2)

3
2

·
∫

(ax+ b)
3
2 dx = 2

5a
(ax+ b)

5
2

·
∫

1√
x2±a2

dx = ln
∣∣∣x+

√
x2 ± a2

∣∣∣
·
∫

1√
a2−x2

dx = sin−1
(
x
a

)
·
∫

1√
x±adx = 2

√
x± a

·
∫

x√
x2±a2

dx =
√
x2 ± a2

Other

·
∫
x sin(ax)dx = − 1

a
x cos(ax) + 1

a2
sin(ax)

·
∫
x cos(ax)dx = 1

a
x sin(ax) + 1

a2
cos(ax)

·
∫
ebx sin(ax)dx = 1

a2+b2
ebx (b sin(ax)− a cos(ax))

·
∫
ebx cos(ax)dx = 1

a2+b2
ebx (a sin(ax) + b cos(ax))
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7.3 U-Substitution

The substitution, u = g(x), du = g′(x)dx is:∫ b

a
f(g(x))g′(x)dx =

∫ g(b)

g(a)
f(u)du

7.4 Integration By Parts∫ b

a
f(x)g′(x)dx = [f(x)g(x)]ba −

∫ b

a
f ′(x)g(x)dx

· u = f(x), v = g(x)

· du = f ′(x)dx, dv = g′(x)dx

[
∫
udv = uv −

∫
vdu]. As a rule of thumb use the

following order, u should be the function that comes
first beween: Logarthmic ↔ Inverse trig. → Alge-
braic (Axn) → Trigonimetric → Exponential (kx).

7.5 Trig-Function Trick

For
∫

sinn(x) cosm(x)dx evaluate the following:

(i) Deg(n) odd: strip one sin out and convert
the rest to cos with sin2(x) = 1−cos2(x), then
use substitution on u = cos(x).

(ii) Deg(m) odd: strip one cos out and convert
the rest to sin with cos2(x) = 1− sin2(x), then
use substitution on u = sin(x).

(iii) Deg(n) and Deg(m) both odd: use either
(i) or (ii).

(iv) Deg(n) and Deg(m) both even: use dou-
ble angle and/or half angle trig identities to
reduce the integral.

For
∫

tann(x) secm(x)dx evaluate the following:

(i) Deg(n) odd: strip one tan and one sec out,
and convert the rest to sec using tan2(x) =
sec2(x) − 1, then use substitution on u =
sec(x).

(ii) Deg(m) even: strip 2 sec out and convert
the rest to tan with sec2(x) = 1+tan2(x), then
use substitution on u = tan(x).

(iii) Deg(n) odd and Deg(m) even: use either
(i) or (ii).

(iv) Deg(n) even and Deg(m) odd: Deal with
each integral differently.

7.6 Root-Trig Substitution Trick

If the integrals is one of the following roots use the
given substitution and formula to convert it to an
integral involving trig functions.

(i)
√
a2 − b2x2 =⇒ x = a

b
sin(u), with property

cos2(x) = 1− sin2(x).

(ii)
√
b2x2 − a2 =⇒ x = a

b
sec(u), with property

tan2(x) = 1− sec2(x).

(iii)
√
a2 + b2x2 =⇒ x = a

b
tan(u), with property

sec2(x) = 1 + tan2(x).

7.7 Rational Functions

Given an integral
∫ P (x)
Q(x)

dx:

· For deg(P (x)) ≥ deg(Q(x)), then apply a polyno-
mial division so that we get an equivalent integral∫
A(x)+

R(x)
Q(x)

dx where
∫ R(x)
Q(x)

dx is easier to solve.

· For deg(P (x)) < deg(Q(x)), then factor Q(x) as
completely as possible and find the partial fraction
decomposition (P.F.D) of the rational expression.

1. Q(x) = (ax+ b)(cx2 +dx+e), then the P.F.D.
is:
A

ax+b
+ B
cx2+dx+e

2. Q(x) = (ax+ b)n, then the P.F.D. is:
A1
ax+b

+ A2
(ax+b)2

+ · · ·+ An
(ax+b)n

7.8 Improper Integrals

Convergent, if lim = k with k finite.
Divergent, if lim = ±∞∨D.N.E.

Infinite Limit:

(i)
∫∞
a f(x)dx = limt→∞

∫ t
a f(x)dx

(ii)
∫ b
−∞ f(x)dx = limt→−∞

∫ b
t f(x)dx

(iii)
∫∞
−∞ f(x)dx =

∫ c
−∞ f(x)dx+

∫∞
c f(x)dx

provided that both integrals are convergent.

Discontinuous Integrand:

(i) Discontinuity at a:∫ b
a f(x)dx = limt→a+

∫ b
t f(x)dx

(ii) Discontinuity at b:∫ b
a f(x)dx = limt→b−

∫ t
a f(x)dx

(iii) Discontinuity at a and b (a < c < b):∫ c
a f(x)dx+

∫ b
c f(x)dx, if both convergent.

Convergence Tests:

· Comparison Test: If f(x) ≥ g(x) ≥ 0 on [a,∞[,
then:
If
∫∞
a f(x)dx converges ⇒

∫∞
a g(x)dx converges.

If
∫∞
a g(x)dx diverges ⇒

∫∞
a f(x)dx diverges.

Useful: If a > 0 ⇒
∫∞
a

1
xp
dx converges if p > 1

and diverges if p ≤ 1.

· Limit Comparison Test: If f, g are continuous

on [a,∞[ with limx→∞
f(x)
g(x)

= L 6=∞, then:∫∞
a |f(x)|dx converges ⇔

∫∞
a |g(x)|dx converges

· Absolute Converpgence:∫∞
a |f(x)|dx converges ⇒

∫∞
a f(x) converges

Definition 7.2 (Antiderivative).
Let f : [a, b]→ R be a function where

f(x) = F ′(x) ∀x ∈ [a, b]

then F is called the antiderivative of f .

Theorem 9: Mean Value Theorem

(Integration) Let f be continuous on [a, b],
then there exists a c such that:

f(c) =
1

b− a

∫ b

a
f(x)dx

(f(c) = favg)

Theorem 10: Fundamental Theorem

Part 1: Suppose that f is continuous on [a, b]
and F is defined as: F (x) ..=

∫ x
a f(t)dt, then F

is differentiable on ]a, b[ and for all x ∈ ]a, b[:

F ′(x) = f(x)

Part 2: Suppose that f is continuous on [a, b]
and F is the antiderivative of f , then:∫ b

a
f(x)dx = F (b)− F (a)

7.9 Derivative of Integrals

If we have to evaluate the derivative of an integral

where F (x) =
∫ g(x)
a f(t)dt, then by the first part

of the Fundamental Theorem of Calculus (and the
Chain Rule) we have: F ′(x) = f(g(x)) · g′(x).

If F (x) =
∫ g(x)
h(x)

f(t)dt =
∫ g(x)
a f(t)dt−

∫ h(x)
a f(t)dt,

then F ′(x) = f(g(x))g′(x)− f(h(x))h′(x).
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8 Sequences

Definition 8.1 (Sequence). A sequence is
set of numbers in a specific order, more for-
mally: (an)∞n=1 is a function f : N→ R where
f(n) = an.

Definition 8.2 (Convergence).
A sequence (an) is convergent to a value L
if limn→∞ an = L, or:

∀ε > 0∃N ∈ N∀n ∈ N : (n > N ⇒ |an−L| < ε)

If the limit doesn’t exist (±∞ or doesn’t con-
verge) we say that (an) is divergent.

Inutition: If for any small number ε there is, we can
find a number N(ε) and L such that all points of an
after N are at most at distance ε from L, the series
converges.

8.1 Convergence Criteria

(i) Linearity: If (an) converges to a, (bn) con-
verges to b and k ∈ N, then (kan + bn) con-
verges to ka+ b.

(ii) Multiplication: If (an) converges to a and
(bn) converges to b then (an · bn) converges to
a · b.

(iii) Division: If (an) converges to a and (bn) con-
verges to b 6= 0 then (an

bn
) converges to a

b
.

(iv) Uniqueness: If (an) is convergent to a, then:
limn→∞ an = a is unique.

(v) Subsequence: If (an) converges to a, then:
any subsequence (ank) is also convergent to a.

(vi) Squeeze Theorem: If we have 3 convergent
sequences limn→∞ an = limn→∞ cn = L, and
limn→∞ bn = b where an ≤ bn ≤ cn, then
b = L.

(vii) Absolute: If (an) is convergent to a, then:
|an| also converges and limn→∞ |an| = |a|.

(viii) Ratio Test: Let (an) be a sequence where

∀n ∈ N : an > 0, then if limn→∞
∣∣∣an+1

an

∣∣∣ = a

and a < 1, limn→∞ an = 0.

(ix) Boundedness: If (an) converges, then (an) is
bounded.

(x) Monotone Convergence: (an) is monotone
then it’s convergent ⇔ (an) is bounded.
If (an) is increasing and bounded ⇒
limn→∞ an = sup{an : n ∈ N}
If (an) is decreasing and bounded ⇒
limn→∞ an = inf{an : n ∈ N}

8.2 Divergence Criteria

(i) (an) is divergent if it has two subsequence that
converge to different limits.

(ii) (an) is divergent if it has a divergent subse-
quence.

(iii) (an) is divergent if it’s unbounded.

8.3 Monotonicity

Definition 8.3.

· A sequence is increasing if:
∀n : an < an+1

· A sequence is decreasing if:
∀n : an > an+1

· A sequence is monotonic if it’s either in-
creasing or decreasing.

Lemma: Every sequence has a monotonic subse-
quence.

8.4 Boundedness

Definition 8.4.

· A sequence is bounded above if:
∃M > 0∀n ∈ N : an ≤M
· A sequence is bounded below if:
∃m > 0∀n ∈ N : m ≤ an
· A sequence is bounded if it’s either bounded

above or below.

8.5 Cauchy Sequence

Definition 8.5.
A sequence (an) is Cauchy if:

∀ε > 0∃N ∈ N : ∀m,n ≥ N ⇒ |an − am| < ε

Inutition: If for any small number ε there is, we can
find a number N such that all points of an after N
are at most at distance ε from each other, the series
is Cauchy.

(i) Cauchy Convergence Criterion:
(an) is convergent ⇔ it’s Cauchy.

(ii) Cauchy Bounded: If (an) is cauchy, then it’s
also bounded.

(iii) Linearity: If (an) is Cauchy, (bn) is Cauchy
and k ∈ N, then (kan + bn) is also Cauchy.

The advantage is that we don’t have to find a limit
L to prove that the sequence converges.

8.6 Accumulation Points

Definition 8.6.
A number a is an accumulation point of (an)
if there exists a subsequence (ank ) that con-
verges to a, or:

∀ε > 0∃K ∈ N : (k ≥ K ⇒ |ank − a| < ε)

(i) Convergence: If (an) converges to L, then L
is the only accumulation point of (an).

(ii) Boundedness: If (an) is bounded, then it has
at least one accumulation point.

(iii) Divercence: If an diverges, then it has no
accumulation point.

8.7 Strategy

· Convergence: Treat (an) like a function and cal-
culate the limit, if it exists it’s convergent. If
it’s a recursive sequence use the Monotone Con-
vergence Criteria by first proving that it’s both
monotonic increasing/decreasing and then that it’s
bounded above if increasing and bounded below if
decreasing. To find the limit let limn→∞ an =
limn→∞ an+1 = L and solve L = a∞ by plugging
L inside of an.

· Monotonicity: To prove that the sequence
is monotonic pick a candidate between increas-
ing/decreasing and solve the inequality with
an, an+1 to prove your candidate. If the sequence
is recursive prove your candidate by induction.

· Boundedness: Try to change n in an to make
the sequence as small as possible to find a lower
bound m, and similarly as big as possible to find
an upper bound M. Give the result in terms of
m ≤ an ≤ M . If it’s a recursive sequence pick a
candidate of upper/lower bound and prove it by
induction.

9 Sequences of Functions

Definition 9.1. A sequence of a function
(fn) is a list of functions (f1, f2, ...) such that
each fn maps a given subset of R into R:

(fn)n∈N, fn : I ⊆ R −→ R

9.1 Convergence

Definition 9.2. A sequence of a function
(fn) can converge to a function f(x) in two
different ways:

· Pointwise if ∀x ∈ I:

lim
n→∞

fn(x) = f(x)

· Uniformly if ∀x ∈ I:

lim
n→∞

sup
x∈I
|fn(x)− f(x)| = 0, or:

∀ε > 0 ∃N ∈ N : n ≥ N ⇒ |fn(x)−f(x)| < ε

(i) Convergence: If (fn) converges uniformly,
then it also converges pointwise.

(ii) Continuity: If (fn) converges uniformly, then
f is continuous.

(iii) Differentiability: If (fn) converges pointwise
to f , and f ′n converges uniformly to the func-
tion g on ]a, b[, then f is differentiable on ]a, b[
and f ′ = g, or: limn→∞ f ′n = (limn→∞ fn)′ =
f ′

(iv) Integrability: If a sequence of integrable
function fn converges uniformly to f on [a, b],
then f is integrable and:

limn→∞
∫ b
a fn(x)dx =

∫ b
a limn→∞ (fn(x)) dx =∫ b

a f(x)dx
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10 Series

Definition 10.1.

· A partial sum is the sum of the first n num-
bers of (an)∞n=1, or: sn ..=

∑n
i=1 ai

· An infinite series is the sum of all terms of
an infinite sequence (an)∞n=1, or:

lim
n→∞

sn =

∞∑
i=1

ai ..= lim
N→∞

N∑
i=1

ai

10.1 Convergence

Definition 10.2 (Convergence).
An infinite series is called convergent if:

∞∑
k=1

ak converges⇔ lim
n→∞

n∑
k=1

ak exists

⇔ (sn) converges

(i) Linearity: If
∑∞
i=0 ai = a,

∑∞
i=0 bi = b, and

c ∈ R, then:
∑∞
i=0(cai + bi) = ca+ b

(ii) Comparison: If
∑∞
i=0 ai = a,

∑∞
i=0 bi = b,

and ∀n ∈ N an ≤ bn, then a ≤ b.
(iii) Start Convergence:

∑∞
i=0 ai is convergent

⇔
∑∞
i=N ai ∀N ∈ N is convergent.

(iv) Bounded Convergence: If (an) is ulti-
mately positive and (sn) is abounded above,
then

∑∞
i=0 ai converges. Otherwise the series

diverges to infinity.

(v) Unbounded Divergence: If (an) is un-
bounded and limn→∞ an = L 6= 0, then if
L > 0 the series diverges to +∞ and if L < 0
the series diverges to −∞.

10.2 Absolute Convergence

Definition 10.3 (Absolute Convergence).
An absolute convergent series

∑∞
i=0 an is a

convergent series where also:

∞∑
i=0

|an| converges

If
∑
an is convergent but

∑
|an| is divergent,

it’s called conditionally convergent.

(i) Theorem: If
∑∞
i=0 |an| converges so does∑∞

i=0 an.

(ii) Inequality:
∣∣∑∞

n=0 an
∣∣ ≤∑∞n=0 |an|

(iii) Unsorted Property: If
∑∞
i=0 an converges

absolutely, so does
∑∞
i=0 bn where bn is a bi-

jection of the elements in an.

(iv) Sum Property:
∑∞
i=0(an+bn) converges ab-

solutely if both
∑∞
i=0 an and

∑∞
i=0 bn are ab-

solute convergent.

10.3 Common Series

(i) ex =
∑∞
n=0

xn

n!

(ii) sin(x) =
∑∞
n=0(−1)n x2n+1

(2n+1)!

(iii) cos(x) =
∑∞
n=0(−1)n x2n

(2n)!

(iv) tan−1(x) =
∑∞
n=0(−1)n x

2n+1

2n+1

(v) 1
1−x =

∑∞
n=0 x

n

(vi) ln(1 + x) =
∑∞
n=0(−1)n x

n+1

n+1

10.4 Common Sums

(i)
∑n
i=1 i =

n(n+1)
2

= n2+n
2

(ii)
∑n
i=1 i

2 = 1
6
n(n+ 1)(2n+ 1) = 2n3+3n2+n

6

(iii)
∑n
i=1 i

3 = 1
4
n2(n+ 1)2

Definition 10.4 (Power Series).
A power series f is a series of the form:

f(x) =

∞∑
n=0

an(x− c)n

· Convergence: the series converges abso-
lutely for 0 ≤ |x − c| < R, and diverges
otherwise. To calculate the radius of con-
vergence we use the ratio (or root) test:

limn→∞
∣∣∣an+1

an

∣∣∣ = limn→∞ |an|
1
n = L then

R =
1

L
= lim
n→∞

∣∣∣∣ an

an+1

∣∣∣∣ =
1

limn→∞ |an|
1
n

.

(i) Continuity: A Power Series f(x) is continu-
ous on {x : |x− c| < R}.

(ii) Differentiability: A Power Series f(x) is dif-
ferentiable in its radius of convergence R and:

f ′(x) =
∞∑
n=0

n · an(x− c)n−1

Definition 10.5 (Geometric Series).
A geometric series is a type of power series
of the form:

∞∑
n=0

arn =
∞∑
n=1

arn−1

· Convergence: converges to a
1−r if |r| < 1

and diverges otherwise.

· Partial Sum: the nth partial sum of a ge-

metric series is sn =
a(1−rn)
(1−r) .

10.5 Convergence Tests

(i) Divergence Test: Let
∑∞
n=1 an be a series

with limn→∞ an 6= 0 or undefined, then the
series diverges.

(ii) P-Test: The series
∑∞
n=1

1
np is convergent

if p > 1 and divergent if p ≤ 1.

(iii) Comparison Test: Let (an), (bn) be ulti-
mately positive such that ∃N ∈ N ∀n ≥ N :
0 ≤ an ≤ bn, then:
If
∑∞
n=1 bn is convergent then

∑∞
n=1 an is also

convergent.
If
∑∞
n=1 an is divergent then

∑∞
n=1 bn is also

divergent.

(iv) Limit Comparison Test: Let (an), (bn) be
positive sequences and assume limn→∞

an
bn

=

L, then: If 0 < L < ∞:
∑∞
n=1 an converges

⇔
∑∞
n=1 bn converges.

If L = 0:
∑∞
n=1 bn converges⇒

∑∞
n=1 an con-

verges.
If L = ∞:

∑∞
n=1 bn diverges ⇒

∑∞
n=1 an di-

verges.

(v) Root Test: Let
∑∞
n=1 an be a series with

(an) ultimately and limn→∞ |an|
1
n = L ≥ 0,

then:
If 0 ≤ L < 1 the series converges absolutely.
If 1 < L ≤ ∞ the series diverges.
If L = 1, this test is inconclusive.

(vi) Ratio Test: Let
∑∞
n=1 an be a se-

ries with (an) ultimately positive and

limn→∞
∣∣∣an+1

an

∣∣∣ = L, then:

If L < 1 the series converges absolutely.
If 1 < L ≤ ∞ the series diverges.
If L = 1 the test is inconclusive.

(vii) Integral Test: If f(n) = an with f(x) contin-
uous,eventually positive and decreasing, then:∫∞
k f(x)dx converges ⇔

∑∞
n=k an converges.

(viii) Alternating Series Test: Let
∑∞
n=1 an

be a series where an = (−1)nbn or an =
(−1)n+1bn, then:

If limn→∞ bn = 0 and bn is decreasing ⇒ the
series converges.

10.6 Convergence Strategy

1. Divergence Test: If it’s easy to see that the
limit is not 0.

2. P-Test/Geometric Series: If it’s of the form∑ 1
np ,

∑
arn, or

∑
arn+1.

3. Comparison Test: If it’s similar to a p-series
or geometric series.

4. Limit Comparison Test: If it’s a rational ex-
pression with polynomials with positive terms.

5. Root Test: If can be written as an = (bn)n.

6. Ratio Test: If it contains factorials or cn.

7. Alternating Series Test: If can be written as
an = (−1)n+cbn, if c /∈ {0, 1} we have to ma-
nipulate it to make it 0 or 1 (e.g.: (−1)n+2 =
(−1)n(−1)2 = (−1)n).

8. Integral Test: If f(n) = an is easy to inte-
grate and f is positive and decreasing (ev. use
derivative).

10.7 Value Calculation

To calculate the value of a series there are two ways:

1. Find the series representation as a Geomet-
ric Power Series, and calcualte its convergence
value. Some tricks are: multiply the series by a
number, strip out the first terms (how many are
necessary), subtract the starting series to the
obtained one to balance the multiplied term.
By repeating this process we might be able to
get to a geometric series.

2. If the series converges absolutley we can rear-
range the sum such that they cancel each other,
to do so we have to find the partial fraction de-
composition of the series so that there are sub-
tracting terms. Subsequently we will evaluate
enough terms to find a repeating pattern (fac-
toring a constant out might help) such that they
cancel out indefinitely. Then we will rewrite the
series as a partial sum

∑N
i=0 with all the terms

that do not cancel (at the beginning and end
of the infinite series) and evaluate the limit to
find its value.

11 Other

11.1 Length of a curve

Given a parametric curve where x = f(t) and
y = g(t) defined on an interval t ∈ [a, b] then the
length of the curve is evaluated as follows:
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L =

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

dt

We assume that the curve is traced exactly once as
t increases from a to b, and that the curve is traced
out from left to right as t increases.

11.2 Bisection Method

The Bisection method is used to approximate so-
lution to f(x) = 0 in an interval [a, b] where
f(a) · f(b) < 0 (xa is positive and xb negative or
vice-versa).

1. Calculate the midpoint c ← b−a
2

and evaluate
f(c).

2. If |f(x)| is small enough, stop and return c.

3. If f(a) · f(c) > 0 let a ← c otherwise let b ← c
and restart from step 1.

This method works by keeping two points a and b
with opposed sign and always shrinking the distance
between them and the solution of f(x) = 0 which
must exist by the Intermediate Value Theorem.

11.3 Newton method

The Newton method is used to approximate solu-
tions to f(x) = 0, pay attention, not always this
method converges, and it could also converge to a
wrong value.

1. If an interval I = [a, b] is given we start by
making a random guess for the approximation
by taking b−a

2
as our x0.

2. We evaluate the next (n + 1)st guess with the

following formula xn+1 = xn− f(xn)
f ′(xn)

provided

that f ′(xn) exists.

3. To get n decimal places of precision we repeat
point 2. until the last n digits are unchanged
for two consecutive cycles.

The Newton method works by recursively finding
the intersection between the original function f and
the tangent line where the current guess lies (g).
Subsequently it uses this line’s intercept with the x
axis, to find the next guess.

g(x) = f(xn)︸ ︷︷ ︸
yn

+ f ′(xn)︸ ︷︷ ︸
slope

(x− xn︸︷︷︸
xn

)⇒ g(x) = 0

11.4 Taylor Approximation

Definition 11.1 (Taylor Series).
A Taylor Series is the rappresentation of
a function as an infinte power series where
f is differentiable any times at a point x0
(f ∈ C∞(x0)) of the form:

T∞(f)(x;x0) =
∞∑
n=0

f (n)(x0)

n!
·︸ ︷︷ ︸

an

(x− x0)n

Where an is the Taylor coefficient.

We can use the first n terms of a Taylor Series to
approximate the value of a function f(x) around x0
with Tn(f)(x;x0).

f(x) ≈ f(x0) + f ′(x0)(x− x0) = T1(f)(x;x0)

This is a rough approximation (n = 1) of f(x) at
the point x0 with a polinomial of deg = 1, the value
and derivative will be the same. If we derivate us-
ing the power rule, the first term will cancel leaving
just the derivative, to get a better approximation
we add more terms so that also higher derivatives
will get the same values, the factorial/exponent are
used to get the correct derivative when the power
rule is applied multiple times, and (x−x0) will just
shift the function if x0 is not centered at 0.

f(x) ≈ f(x0) + f ′(x0)(x− x0) +
f (2)(x− x0)2

2!

+ · · ·+
f (n)(x− x0)n

n!
= Tn(f)(x;x0)

Remainder:

f(x) = Tn(f)(x;x0) +Rn(f)(x;x0)

Rn(f)(x;x0) ..= |f(x)− Tn(f)(x;x0)|

The remainder Rn quantifies how good is the esti-
mate of the Taylor Series with respect to the actual
value of the function f(x).

Theorem 11: Taylor’s Theorem

If f : I → R is differentiable n + 1 times
f ∈ C(n+1)(I) in an interval I containing the
center x0 ∈ I, then for each x ∈ I there exists
a ξ ∈ ]x, x0[ such that:

Rn(f)(x;x0) =
f (n+1)(ξ)

(n+ 1)!
(x− x0)n+1

Lagrange Error Bound:

|Rn(f)(x;x0)| ≤ sup
x0<ξ<a

∣∣f (n+1)(ξ)
∣∣ (x−x0)n+1

(n+1)!
,

11.5 Integral Series Approximation

Given a convergent infinite series
∑∞
n=1 f(n) it’s

usually hard to find it’s value. With this method
we can approximate the sum if f(n) is continuous,
positive and decreasing.

S =

∞∑
n=1

f(n) =

k∑
n=1

f(n)︸ ︷︷ ︸
Sk Partial Sum

+

∞∑
n=k+1

f(n)

︸ ︷︷ ︸
RkRemainder

Since we can calculate an approximation Sk ≈ S,
Rk will tell us the difference from the actual value
of S (Rk = S − Sk). Using integrals we can find
upper and lower bound for Rk:

Rk ≥
∫ ∞
k+1

f(x)dx, Rk ≤
∫ ∞
k

f(x)dx

Then the value of the infinte series will be:

Sk +

∫ ∞
k+1

f(x)dx ≤ S ≤ Sk +

∫ ∞
k

f(x)dx

Thus to calculate the approximation:

1. Choose a value for k, the higher the better the
approximation since we evaluate more terms
where the intergal would find an unprecise
bound.

2. Evaluate Sk =
∑k
n=1 f(n).

3. Evaluate both improper intergrals L =∫∞
k+1 f(x)dx and U =

∫∞
k f(x)dx.

4. Then S will be between L+Sk and U+Sk, eval-
uate the mean to get an average term Sapprox =
2Sk+L+U

2
.

11.6 Prove Bijectivity

To prove that a function f : X → Y is bijective we
have to prove that it’s both:

· Surjective: (∀y ∈ Y ∃x ∈ X : F (x) = y) we have
to prove that f is continuous and either one of the
following is true:

1. limx→inf(X) f(x) = inf(Y ) and
limx→sup(X) f(x) = sup(Y )

2. limx→inf(X) f(x) = sup(Y ) and
limx→sup(X) f(x) = inf(Y )

Then by the Intermediate Value Theorem f(x)
covers the entire domain and thus it’s surjective.

· Injective: (F (x) = F (y) ⇒ x = y) we have to
show that f(x) is strictly increasing if when we
proved surjectivity we used 1) or strictly decreas-
ing if we used 2) which can be proved with the first
derivative (> 0 or < 0).

11.7 Approximating Definite Inte-
grals∫ b

a
f(x)dx = lim

n→∞

b− a
n

n−1∑
i=0

f

(
a+

i(b− a)

n

)

11.8 Theorems

Theorem 12: Polynomial Roots

A polynomial Pn of degree d has:

· From 0 to n distinct real roots if d is even.

· From 1 to n distinct real roots if d is odd.

· Always n complex roots (Fundamental The-
orem of Algebra).

Theorem 13: Archimedean Property

∀x ∈ R ∃nx ∈ N : x < nx

Theorem 14: Density Theorem

∀x, y ∈ R ∃z ∈ Q : x < y ⇒ x < z < y

Theorem 15: Function Implication

Given a function f , the following implications
hold:

diff.⇒ continuous⇒ r. integrable⇒ bounded

None of the properties on the right implies one
of the properties on the left.

11.9 Extra

Arithmetic Geometric Series

∞∑
n=1

nqn−1 = 1 + 2q + 3q2 + · · ·+ nqn−1

=
1− (n+ 1)qn + nqn+1

(1− q)2
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Continuous Piecewise Function

f(x) =


x2 − ax+ b x ≤ −1

(a+ b)x −1 < x < 1

x2 + ax− b x ≥ 1

Then to have continuity both must be true:

f(−1) = 1 + a+ b
!
= lim
x→−1+

f(x)

= lim
x→−1+

(a+ b)x = −(a+ b)

f(1) = 1 + a− b !
= lim
x→1−

f(x)

= lim
x→1−

(a+ b)x = a+ b

Function Length If f is differentiable on [a, b],
then the graph of the function has a length:

L =

∫ b

a

√
1 + (f ′(x))2dx
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